Stochastic modelling of predator–prey dynamics in a three-patch ecosystem

https://doi.org/10.51867/ajernet.maths.6.3.34

Authors

Keywords:

Stochastic differential equations (SDEs), Multi-patch ecosystem, Stochastic Lyapunov function, Predator-prey model

Abstract

This study presents a stochastic predator-prey model in a three-patch ecosystem, motivated by cage-based fish farming. Each patch hosts prey and predator populations, with inter-patch prey migration and unbounded variations in the population represented by stochastic terms. The model integrates logistic prey growth, predation, and mortality within a coupled system of stochastic differential equations. We assess stochastic stability using stochastic Lyapunov function methods. Numerical simulations confirm that when predator efficiency ei < 1, the total population remains bounded, indicating stability. However, for ei > 1, the system becomes unstable. The model also demonstrates that prey populations remain viable under low harvesting rates (ν1 = ν2 = ν3 = 0.02) and moderate noise intensities (0.10 σ 0.90). This work contributes to sustainable resource management by offering a robust framework for modeling predator-prey interactions in multi-patch environments.

Dimensions

Azar, C., Lindgren, K., and Holmberg, J. (1996). Constant quota versus constant effort harvesting.

https://doi.org/10.1007/BF00699291 DOI: https://doi.org/10.1007/BF00699291

Brauer, F., and Soudack, A. C. (1979). Stability regions and transition phenomena for harvested predator-prey systems. Journal of Mathematical Biology 7.4: 319-337. https://doi.org/10.1007/BF00275152 DOI: https://doi.org/10.1007/BF00275152

Brauer, F., and Soudack, A. C. (1981). Constant-rate stocking of predator-prey systems. Journal of Mathematical Biology, 11, 1-14. https://doi.org/10.1007/BF00275820 DOI: https://doi.org/10.1007/BF00275820

Brauer, F. (1984). Constant Yield Harvesting of Population Systems. In: Levin, S. A., Hallam, T.G. (eds) Mathematical Ecology. Lecture Notes in Biomathematics, vol54. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-87422-2_18 DOI: https://doi.org/10.1007/978-3-642-87422-2_18

Brauer, F., and Chavez, C. C. (2001). Mathematical models in population biology and epidemiology. SecondEdition, Springer, New York. https://doi.org/10.1007/978-1-4757-3516-1 DOI: https://doi.org/10.1007/978-1-4757-3516-1

Carroll, C. (2004). Theoretical foundations of buffer stock saving. https://doi.org/10.3386/w10867. DOI: https://doi.org/10.3386/w10867

Chatterjee, A., and Pal, S. (2023). A predator-prey model for the optimal control of fish harvesting through the imposition of a tax. An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 13(1), 68-80. https://doi.org/10.11121/ijocta.2023.1218 DOI: https://doi.org/10.11121/ijocta.2023.1218

Choirul et al., (2023). Prey-Predator Mathematics Model for Fisheries Insurance Calculations in the Search of Optimal Strategies for Inland Fisheries Management: A Systematic Literature Review. Sustainability, 15(16), 12376; https://doi.org/10.3390/su151612376 DOI: https://doi.org/10.3390/su151612376

Darcy et al., (2019). Opportunities to improve fisheries management through innovative technology and advanced data systems. Volume20, Issue3, Pages 564-583. https://doi.org/10.1111/faf.12361 DOI: https://doi.org/10.1111/faf.12361

Dessy, R. S., Martha, L., and Pratama, R. A. (2023). Harvesting effect a Ratio-Dependent Predator- Prey Model. Technium: Romanian Journal of Applied Sciences and Technology, 17(1), 1-7. Retrieved from https://techniumscience.com/index.php/technium/article/view/10038.

Edwige, B., Bernt-Erik, S., and Steinar, E. (2021). Sustainable strategies for harvesting predators and prey in a fluctuating environment. Ecological Modelling, Volume 440, 109350. https://doi.org/10.1016/j.ecolmodel.2020.109350 DOI: https://doi.org/10.1016/j.ecolmodel.2020.109350

Hastings, A. (1998). Population biology, concepts and models. Springer, New York.

Joan et al., (2023). Application of a stochastic compartmental model to approach the spread of environmental events with climatic bias. Ecological Informatics, Volume 77, 102266.

https://doi.org/10.1016/j.ecoinf.2023.102266 DOI: https://doi.org/10.1016/j.ecoinf.2023.102266

Kalyan et al., (2015). Stochastic stability of a fishery model with Optimal Harvesting Policy. International Journal of Pure and Applied Mathematics, Volume 101 No. 6, 975-983.

Lasse et al., (2011). The roles of spatial heterogeneity and adaptive movement in stabilizing (or destabilizing) simple metacommunities. Journal of Theoretical Biology, Volume 291, Pages 76-87.

https://doi.org/10.1016/j.jtbi.2011.09.004 DOI: https://doi.org/10.1016/j.jtbi.2011.09.004

Lyapunov's method and the Lasalle invariance principle. (2023). Ordinary Differential Equations, 79-90. https://doi.org/10.1142/9789811281556-0007 DOI: https://doi.org/10.1142/9789811281556_0007

Mark, K. (2001). Elements of Mathematical Ecology. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511608520 DOI: https://doi.org/10.1017/CBO9780511608520

Murray, J. D. (2002). Mathematical biology: I. An introduction. Third Edition, Springer Verlag, Berlin.

Nicholas et al., (2021). Overfishing drives over one-third of all sharks and rays towards a global extinction crisis. Current Biology, Volume 31, Issue 21, 4773-4787. DOI: https://doi.org/10.1016/j.cub.2021.08.062

Niranjan, H., Srinivas, M. N., and Viswanathan, K.K. (2023). Fishery resource management with migratory prey harvesting in two zones- delay and stochastic approach. Sci Rep;13(1):7273. PMID: 37142600; PMCID: PMC10160122. https://doi.org/10.1038/s41598-023-34130-x DOI: https://doi.org/10.1038/s41598-023-34130-x

Prabir, P., Shyamal, K. M., and Golam, M. (2018). Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior. Volume 10, Pages 50-57, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2017.12.004 DOI: https://doi.org/10.1016/j.imu.2017.12.004

Ruth, F., and Peter, L. (1970). Ito's lemma in infinite dimensions. Journal of Mathematical Analysis and Applications. Volume 31, Issue 2, August 1970, Pages 434-448. https://doi.org/10.1016/0022-247X(70)90037-5. DOI: https://doi.org/10.1016/0022-247X(70)90037-5

Sahoo, B., Das B., and Samanta S. (2016). Dynamics of harvested-predator-prey model: role of alternative resources. Model. Earth Syst. Environ. 2, 140. https://doi.org/10.1007/s40808-016-0191-x. DOI: https://doi.org/10.1007/s40808-016-0191-x

Shuai, L., Jin, Z., and Sanling, Y. (2022). Critical bait casting threshold of cage culture in open advective environments. Applied Mathematics Letters, Volume 134, 108312.

https://doi.org/10.1016/j.aml.2022.108312 DOI: https://doi.org/10.1016/j.aml.2022.108312

Syamsuddin, T., and Rustam, T. (2017). Optimal harvesting policy og predator-prey model with free fishing and reserve zones. AIP Conference Proceedings 1825, 020023. https://doi.org/10.1063/1.4978992 DOI: https://doi.org/10.1063/1.4978992

Tao, F., Russell, M., and Hao, W. (2023). Variation in environmental stochasticity dramatically affects viability and extinction time in a predator - prey system with high prey group cohesion. Mathematical Biosciences 365(39):109075. https://doi.org/10.1016/j.mbs.2023.109075 DOI: https://doi.org/10.1016/j.mbs.2023.109075

Tapan, K. K. (2003). Selective harvesting in a prey-predator fishery with time delay. Mathematical and Computer Modelling, vol. 38, no. 3-4, pp. 449-458. https://doi.org/10.1016/S0895-7177(03)90099-9 DOI: https://doi.org/10.1016/S0895-7177(03)90099-9

Tapan, K. K. and Pahari, U. K. (2007). Modelling and analysis of a prey-predator system with stage-structure and harvesting. Nonlinear Analysis. Real World Applications, vol. 8, no. 2, pp. 601-609.

https://doi.org/10.1016/j.nonrwa.2006.01.004 DOI: https://doi.org/10.1016/j.nonrwa.2006.01.004

Tapan, K. K. and Chakraborty, K. (2010). Effort dynamic in a prey-predator model with harvesting. International Journal of Information and Systems Sciences, vol. 6, no. 3, pp. 318-332.

Tapan, K. K. and Ghorai, A. (2011). Dynamic behaviour of a delayed predators-prey model with harvesting. Applied Mathematics and Computation, vol. 217, no. 22, pp. 9085-9104.

https://doi.org/10.1016/j.amc.2011.03.126 DOI: https://doi.org/10.1016/j.amc.2011.03.126

Tapan, K. K. (2006). Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. Journal of Computational and Applied Mathematics, Volume 185, Issue 1, Pages 19-33.

https://doi.org/10.1016/j.cam.2005.01.035 DOI: https://doi.org/10.1016/j.cam.2005.01.035

Wang, J., and Nie, H. (2022). Invasion dynamics of a predator-prey system in closed advective environments. Journal of Differential Equations, 318, 298-322. https://doi.org/10.1016/j.jde.2022.02.043 DOI: https://doi.org/10.1016/j.jde.2022.02.043

Yunfei, L.V., Rong Y., and Yongzhen P. (2012). A prey-predator model with harvesting for fishery resource with reserve area. Applied Mathematical Modelling, Volume 37, Issue 5, Pages 3048-3062, https://doi.org/10.1016/j.apm.2012.07.030 DOI: https://doi.org/10.1016/j.apm.2012.07.030

Published

2025-08-11

How to Cite

Mayabi, L. T., Angwenyi, D., & Oganga, D. (2025). Stochastic modelling of predator–prey dynamics in a three-patch ecosystem. African Journal of Empirical Research, 6(3), 413–427. https://doi.org/10.51867/ajernet.maths.6.3.34