Application of the Vector Autoregressive Model Incorporating New Measurements Using the Bayesian Approach




Bayesian Approach, Measurements, Root Mean Square Error, Vector Autoregressive


In this paper, an application of the updated vector autoregresive model incorporating new information or measurements is considered. We consider secondary data obtained from the Kenya National Bureau of statistics, Statistical Abstract reports from 2000-2021 which is on monetary value marketed at current prices from crops, horticulture, livestock and related products, fisheries and forestry. A VAR(1) model is fitted to the data and then the model updated to incorporate the measurements. From the results, it is found that the updated model performs well on the simulated data based on the values of the root mean square error obtained.


Abdullah T. L. (2022). Forecasting time series using Vector Autoregressive Model, Int. J. Nonlinear Anal. Appl., 13(1), 499-511.

Box G. E. P., Jenkins G. M., Reinsel G. C., & Ljung G. M. (2015). Time Series Analysis: Forecasting and Control, 5th Edition, ISBN: 978-1-118-67502-1.

Elalaoui, O., Fadlaoui, A., Maatala, N., & Ibrahimy, A. (2021). Agriculture and GDP Causality Nexus in Morocco: Empirical Evidence from a VAR Approach. International Journal of Agricultural Economics, 6(4), 198-207. DOI:

Hamzah L. M., Nabilah S. U., Usman M., & Wamiliana, V.E. (2020). Dynamic Modeling and Forecasting of Data Export of Agricultural Commodityby Vector Autoregressive Model, Journal of Southwest Jiaotong University, 55(3), 1 - 10. DOI:

Hossain, M., Al Amin, A. A., & Islam, A. H. M. S. (2018). Modeling and forecasting of climatic parameters: univariate SARIMA versus multivariate vector autoregression approach. Journal of the Bangladesh Agricultural University, 16(1), 131-143. Retrieved from DOI:

Kalliovirta, L., Niskanen, O., & Heikkila, A. M. (2019). Forecasting Milk prices with VAR Models - Application to Farm Gate Price in Finland. Available at SSRN: DOI:

Khairan R., Firuz K. and Aswani K. C. (2022) Forecasting COVID-19: Vector Autoregression-Based Model. Arabian Journal for Science and Engineering, 47, 6851-6860. DOI:

Lutkepohl H. (2005). New Introduction to Multiple Time Series Analysis. Berlin, Heidelberg, New York: Springer. DOI:

Quenouille, M. H. (1957). The Analysis of Multiple Time-Series. London: Griffin.

Roush, J., Siopes, K., & Hu, G. (2017). "Predicting gross domestic product using autoregressive models." IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 317-322. DOI:

Saheed B. A., Kola Y. K., Adewole O. G., Muideen O. A., Saheed O. J., Muhammed T. M., Ekundayo S. O., Olakiitan I. A., Magdalene P., & Oluwole J. O. (2021) Vector Autoregressive Modeling of Crop Production Index - Permanent Cropland Relationship in Nigeria, Annals: Computer Science Series, 19(1), 92 - 97.

Sims C. A. (1980), Macroeconomics and Reality, Econometrica, 48(1), 1 - 48. DOI:

Stock H. J.S., & Watson W. M. (2001). Vector Autoregressions. watson var.pdf DOI:

Tiao G. C. and Box G. E. P. (1981). Modeling Multiple Time Series with Applications, Journal of the American Statistical Association, 76(376) 802-816. DOI:

Yashavanth B. S., SinghK. N., Paul K. A. and Paul K. R. (2017) Forecasting prices of coffee seeds using Vector Autoregressive Time Series Model. Indian Journal of Agricultural Sciences, 87(6), 754-758. DOI:




How to Cite

Musyoki, M., Alilah, D., & Angwenyi, D. (2023). Application of the Vector Autoregressive Model Incorporating New Measurements Using the Bayesian Approach. African Journal of Empirical Research, 4(2), 1054–1062.