Motivational Determinants of Adoption of Tarpaulins and Hermetic Bags for Maize Drying and Storage in Rukwa and Katavi Regions, Tanzania

https://doi.org/10.51867/ajernet.6.2.3

Authors

Keywords:

Bivariate Probit Regression, Hermetic Bags, Motivation, Postharvest Losses, Technology Adoption, Tarpaulins

Abstract

This paper investigated the adoption of two key improved postharvest technologies—tarpaulins for drying and hermetic bags for storage—among smallholder maize farmers in Rukwa and Katavi regions, Tanzania - using the comprehensive Diffusion and Adoption Model. These two technologies were disseminated in the study area, yet adoption rate remained low. The objectives were to: assess the extent of adoption; analyse the motivational factors influencing adoption; and evaluate how these factors affect the likelihood of adoption. A total of 365 farmers were selected through proportionate stratified sampling during the 2021/2022 agricultural season. Data collection involved structured questionnaires for quantitative data and focus group discussions and key informant interviews for qualitative insights. The analysis utilised thematic content analysis and bivariate probit regression using STATA 17. Findings revealed that male farmers were significantly more likely to adopt tarpaulins (Coef = 1.132; p < 0.01), but less likely to adopt hermetic bags (Coef = -2.668; p < 0.01). Older farmers were less likely to adopt hermetic bags (Coef = -0.146; p < 0.01), whereas greater farming experience increased adoption (Coef = 0.112; p < 0.05). Higher income decreased tarpaulin use (Coef = -0.351; p < 0.05) but increased hermetic bag adoption (Coef = 0.774; p < 0.01). Membership in farmer groups (Coef = 0.932; p < 0.01) and access to extension services (Coef = 0.391; p < 0.05) positively influenced hermetic bag adoption. Farmers facing credit limitations were more likely to use tarpaulins (Coef = 0.601; p < 0.01). Negative attitudes and limited awareness reduced adoption rates. The paper highlighted the influence of gender, age, income, experience, social connections, and extension access on technology adoption. It recommends gender-inclusive training, financial support, strengthened extension services, and market incentives to promote adoption. These interventions can reduce postharvest losses, increase incomes, and enhancing food security among smallholder farmers.

Author Biographies

Prof. Kim Abel Kayunze, Sokoine University of Agriculture, Tanzania

Professor

Department of Development and Strategic Studies,

Sokoine University of Agriculture, P.O. 3024 Morogoro, Tanzania

Doctor John Victor Msinde, University of Dar-es-Salaam, Tanzania

Doctor

Institute of Development Studies

University of Dar-es-Salaam, P.O. Box 35091 Dar-es-salaam, Tanzania

 

Dimensions

Abass, A. B., Fischler, M., Schneider, K., Daudi, S., Gaspar, A., Rust, J. J., Kabula, E., Ndunguru, G., Madulu, D., & Msola, D. (2018). On-farm comparison of different postharvest storage technologies in a maize farming system of Tanzania Central Corridor. Journal of Stored Products Research, 77, 55-65. DOI: https://doi.org/10.1016/j.jspr.2018.03.002

https://doi.org/10.1016/j.jspr.2018.03.002

Acerenza, S., Bartalotti, O., & Kédagni, D. (2023). Testing identifying assumptions in bivariate probit models. Journal of Applied Econometrics, 38(3), 407-422. https://doi.org/10.1002/jae.2956 DOI: https://doi.org/10.1002/jae.2956

Affognon, H., Mutungi, C., Sanginga, P., & Borgemeister, C. (2015). Unpacking postharvest losses in Sub-Saharan Africa: A meta-analysis. World Development, 66, 49-68. DOI: https://doi.org/10.1016/j.worlddev.2014.08.002

https://doi.org/10.1016/j.worlddev.2014.08.002

African Union Commission. (2014). Malabo Declaration on accelerated agricultural growth and transformation for shared prosperity and improved livelihoods. Addis Ababa, Ethiopia: African Union Commission.

AGRA. (2021). How integration enhances the competitiveness of agribusinesses and smallholder farming systems - The Tanzania case study. Dar es Salaam, Tanzania.

Ahmed, H., & Ahmed, M. (2023). Influencing factors on adoption of modern agricultural technology in developing economy countries. Developing Country Studies. https://doi.org/10.7176/dcs/13-2-01

Ainembabazi, J. H., & Mugisha, J. (2014). The role of farming experience on the adoption of agricultural technologies: Evidence from smallholder farmers in Uganda. Journal of Development Studies, 50(5), 666-679. https://doi.org/10.1080/00220388.2013.874556 DOI: https://doi.org/10.1080/00220388.2013.874556

Ajzen, I. (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Processes, 50(2), 179-211. DOI: https://doi.org/10.1016/0749-5978(91)90020-T

https://doi.org/10.1016/0749-5978(91)90020-T

Akpan-Etuk, E. (2024). Technology use by Nigerian smallholder farmers and the significant mediating factors. In J. A. Oguntimehin & J. F. George (Eds.), Emerging technologies for digital infrastructure development: Proceedings of ICTID 2023 (pp. 51-64). Springer. https://doi.org/10.1007/978-3-031-45642-8_5 DOI: https://doi.org/10.1007/978-3-031-45642-8_5

Akumu, G., Atukwase, A., Tibagonzeka, J. E., Apil, J., Wambete, J. M., Atekyereza, P. R., Kiyimba, F. G., & Muyonga, J. H. (2020). On-farm evaluation of effectiveness of improved postharvest handling of maize in reducing grain losses, mold infection and aflatoxin contamination in rural Uganda. African Journal of Food, Agriculture, Nutrition and Development, 20(5), 16522-16539. DOI: https://doi.org/10.18697/ajfand.93.19790

https://doi.org/10.18697/ajfand.93.19790

Aleke, J. U. (2024). Navigating financial constraints: Understanding causes, effects, and strategic solutions across individual, corporate and governmental sectors. Newport International Journal of Current Issues in Arts and Management, 5(1), 7-11. https://doi.org/10.59298/nijciam/2024/5.1.711000 DOI: https://doi.org/10.59298/NIJCIAM/2024/5.1.711000

Asante, I. K., Ametepey, E. T., Ocran, J. K., Omega, S., & Annor-Frempong, F. (2024). Factors influencing the behaviour of extension agents towards the adoption of digital technologies in agricultural extension: A theory of planned behaviour perspective. International Journal of Agricultural Extension, 12(3), 361-378. https://doi.org/10.33687/ijae.012.002.4528 DOI: https://doi.org/10.33687/ijae.012.002.4528

Asfaw, S., Shiferaw, B., Simtowe, F., & Lipper, L. (2012). Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia. Food Policy, 37(3), 283-295. DOI: https://doi.org/10.1016/j.foodpol.2012.02.013

https://doi.org/10.1016/j.foodpol.2012.02.013

Balana, B. B., & Oyeyemi, M. A. (2022). Agricultural credit constraints in smallholder farming in developing countries: Evidence from Nigeria. World Development Sustainability, 1, 100012. https://doi.org/10.1016/j.wds.2022.100012 DOI: https://doi.org/10.1016/j.wds.2022.100012

Bandhu, D., Mohan, M. M., Nittala, N. P., Jadhav, P., Bhadauria, A., & Saxena, K. K. (2024). Theories of motivation: A comprehensive analysis of human behaviour drivers. Acta Psychologica, 244, Article 104177. https://doi.org/10.1016/j.actpsy.2024.104177 DOI: https://doi.org/10.1016/j.actpsy.2024.104177

Bontsa, N. V., Mushunje, A., & Ngarava, S. (2023). Factors influencing the perceptions of smallholder farmers towards adoption of digital technologies in Eastern Cape Province, South Africa. Agriculture, 13(8), 1471. https://doi.org/10.3390/agriculture13081471 DOI: https://doi.org/10.3390/agriculture13081471

Borges, J. A. R., Foletto, L., & Xavier, V. T. (2015). An interdisciplinary framework to study farmers' decisions on adoption of innovation: Insights from Expected Utility Theory and Theory of Planned Behaviour. African Journal of Agricultural Research, 10(29), 2814-2825. https://doi.org/10.5897/AJAR2015.9650 DOI: https://doi.org/10.5897/AJAR2015.9650

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008

Diagne, A., & Zeller, M. (2001). Access to credit and its impact on welfare in Malawi (Research Report No. 116). International Food Policy Research Institute (IFPRI).

Doss, C. R. (2006). Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agricultural Economics, 34(3), 207-219. DOI: https://doi.org/10.1111/j.1574-0864.2006.00119.x

https://doi.org/10.1111/j.1574-0864.2006.00119.x

Emmanuel, M., Orieko, C. P., & Gichuru, K. J. (2022). Adoption-diffusion model of farm innovations: Its applicability to radical terraces project in Rwanda. Turkish Journal of Agriculture - Food Science and Technology, 10(4), 579-586. https://doi.org/10.24925/turjaf.v10i4.579-586.4666 DOI: https://doi.org/10.24925/turjaf.v10i4.579-586.4666

FAO. (2019). The state of food and agriculture 2019: Moving forward on food loss and waste reduction. Food and Agriculture Organization Publications.

Fuglie, K. O., & Kascak, C. A. (2001). Adoption and diffusion of natural-resource-conserving agricultural technology. Review of Agricultural Economics, 23(2), 386-403. DOI: https://doi.org/10.1111/1467-9353.00068

https://doi.org/10.1111/1467-9353.00068

Genius, M., Kounousi, P., Nauges, C., & Tzouveleka, V. (2014). Information transmission in irrigation technology adoption and diffusion: Social learning, extension service, and spatial effects. American Journal of Agricultural Economics, 96(1), 328-344. DOI: https://doi.org/10.1093/ajae/aat054

https://doi.org/10.1093/ajae/aat054

Gizachew, L., Admassu, H., & Gebrehiwot, H. (2021). Post-harvest management practices and post-harvest losses of maize in Ethiopia. African Journal of Agricultural Research, 16(4), 539-548.

Goldratt, E. M., & Cox, J. (1984). The goal: A process of ongoing improvement. North River Press.

Gollin, D., & Rogerson, R. (2010). Agriculture, roads, and economic development in Uganda (Working Paper No. 15863). National Bureau of Economic Research. https://doi.org/10.3386/w15863 DOI: https://doi.org/10.3386/w15863

Greene, W. H. (2012). Econometric analysis (7th ed.). Pearson Education.

HELVETAS-Tanzania. (2020). Save Safe Food Project (SSF) final report for baseline survey conducted in Rukwa and Katavi regions.

Jeremic, M., Matkovski, B., Dokic, D., & Jurjevic, Z. (2024). Food loss and food waste along the food supply chain: An international perspective. Problemy Ekorozwoju, 19(2), 81-90. DOI: https://doi.org/10.35784/preko.5991

https://doi.org/10.35784/preko.5991

Jin, Y., Lin, Q., & Mao, S. (2022). Tanzanian farmers' intention to adopt improved maize technology: Analyzing influencing factors using SEM and FSQCA methods. Agriculture, 12(12), 1991. https://doi.org/10.3390/agriculture12121991 DOI: https://doi.org/10.3390/agriculture12121991

Jones, M., Alexander, C., & Lowenberg-DeBoer, J. (2011). Profitability of hermetic Purdue Improved Crop Storage (PICS) bags for African common bean producers. African Journal of Agricultural and Resource Economics, 6(2), 163-178.

Kaminski, J., & Christiaensen, L. (2014). Post-harvest loss in Sub-Saharan Africa: What do farmers say? Global Food Security, 3(3-4), 149-158. https://doi.org/10.1016/j.gfs.2014.10.002 DOI: https://doi.org/10.1016/j.gfs.2014.10.002

Karbo, R. T., Frewer, L. J., Areal, F., Jones, G., & Nurudeen, S. (2024). A systematic review of the efficacy of theories used to understand farmers' technology adoption behaviour in lower-to-middle-income countries. Development Studies Research, 11(1), Article 2294696. https://doi.org/10.1080/21665095.2023.2294696 DOI: https://doi.org/10.1080/21665095.2023.2294696

Kaur, K., & Kaur, M. (2010). Innovation diffusion and adoption models: Foundation and conceptual framework. Management and Labour Studies, 35(2), 289-301. https://doi.org/10.1177/0258042X1003500209 DOI: https://doi.org/10.1177/0258042X1003500209

Kergna, A. O., Nientao, A., Diallo, D. F., & Baumüller, H. (2017). The use of information and communication technologies (ICTs) in agriculture in Mali (Agricultural Policy and Innovation Brief No. 3). Research for Agricultural Innovation (R4AI), ZEF. https://research4agrinnovation.org/app/uploads/2022/08/ICTs_Mali.pdf

Küçükalkan, K. (2023). Table 6. Factor analysis results of North Cyprus [Dataset]. Figshare. https://doi.org/10.6084/m9.figshare.22289464

Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 1-8. DOI: https://doi.org/10.3390/foods6010008

https://doi.org/10.3390/foods6010008

Liu, M., & Liu, H. (2024). Farmers' adoption of agriculture green production technologies: Perceived value or policy-driven? Heliyon, 10(1), e23925. https://doi.org/10.1016/j.heliyon.2023.e23925 DOI: https://doi.org/10.1016/j.heliyon.2023.e23925

Mausch, K., Hall, A., Hambloch, C., & Woolley, J. (2021). Adopting or adapting? The push and pull of technology in farming. World Development Perspectives, 21, 100290. https://doi.org/10.1016/j.wdp.2021.100290 DOI: https://doi.org/10.1016/j.wdp.2021.100290

Ministry of Agriculture & National Bureau of Statistics (2022). Annual Agricultural Sample Survey Report 2021/2022. Dodoma, Tanzania. Available at: https://www.nbs.go.tz

Mpiira, S., Kipsat, M., Mose, P.B., Kalyango, F.X., & Staver, C. (2024). The influence of gender specific decisions on household technology choice within the farming households in Central Uganda. African Journal of Food, Agriculture, Nutrition and Development, 24(3), 25795-25824. DOI: https://doi.org/10.18697/ajfand.128.24325

https://doi.org/10.18697/ajfand.128.24325

Murdock, L.L., & Baoua, I.B. (2014) On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. Journal of Stored Products Research, 58, 3-11. https://doi.org/10.1016/j.jspr.2014.03.003 DOI: https://doi.org/10.1016/j.jspr.2014.02.006

Mutungi, C., Ndunguru, G., Gaspar, A., & Abass, A. (2020). Improved postharvest practices for reduction of losses and improvement of produce quality: A trainer's manual for smallholder maize farmers in Tanzania. Ibadan, Nigeria: IITA.

Mwangi, M., & Kariuki, S. (2015). Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. Journal of Economics and Sustainable Development, 6(5), 208-216.

Nazarli, R. (2024). A study of the relationship between internal psychological factors and achievement motivation in students. Health and Society, 4(04), 154-166. DOI: https://doi.org/10.51249/hs.v4i04.2123

https://doi.org/10.51249/hs.v4i04.2123

Ngowi, E. R., & Selejio, O. (2019). Post-harvest loss and adoption of improved post-harvest storage technologies by smallholder maize farmers in Tanzania. African Journal of Economic Review, 7(1), 249-267. https://doi.org/10.22004/ag.econ.287967

Ogunleye, A. S., Akinloye, M. O., Kehinde, A., Ajayi, O. M., & Wongnaa, C. A. (2024). Impacts of credit constraints on adoption of risk management strategies and income of maize farmers in Northern Nigeria. Agricultural Finance Review, 84(2/3), 114-142. https://doi.org/10.1108/afr-11-2023-0152 DOI: https://doi.org/10.1108/AFR-11-2023-0152

Onuwa, G., Mailumo, S., & Oyewole, S. (2023). Socio-economic determinants of adoption of maize production technologies among smallholders. Agriekonomika, 12(1), 83-94. https://doi.org/10.21107/agriekonomika.v12i1.14621 DOI: https://doi.org/10.21107/agriekonomika.v12i1.14621

Raulgaonkar, H. (2021). Success of the "first-time first-line manager": Model development and validation. Emerald Open Research, 3(4), Article 20. https://doi.org/10.35241/emeraldopenres.14212.1 DOI: https://doi.org/10.1108/EOR-04-2023-0011

https://doi.org/10.1108/EOR-04-2023-0011

Rizzo, G., Migliore, G., Schifani, G., & Vecchio, R. (2024). Key factors influencing farmers' adoption of sustainable innovations: A systematic literature review and research agenda. Organic Agriculture, 14(1), 57-84. https://doi.org/10.1007/s13165-023-00440-7 DOI: https://doi.org/10.1007/s13165-023-00440-7

Rogers, E. M. (1983). Diffusion of innovations (Vol. 10022). The Free Press, A Division of Macmillan Publishing Co., Inc.

Rwebangira, N. E. V., Silayo, N. V. C., & Mrema, N. G. C. (2022). Factors that influence smallholder farmers' decisions to employ hermetic bag technology for maize grain storage in Kilosa District, Tanzania. International Journal of Scientific Research Updates, 4(1), 346-355. https://doi.org/10.53430/ijsru.2022.4.1.0141 DOI: https://doi.org/10.53430/ijsru.2022.4.1.0141

Sawicka, B. (2020). Post-harvest losses of agricultural produce. In W. Leal Filho, A. M. Azul, L. Brandli, P. G. Özuyar, & T. Wall (Eds.), Zero hunger. Encyclopedia of the UN Sustainable Development Goals (pp. 654-669). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-95675-6_40

https://doi.org/10.1007/978-3-319-95675-6_40

Sheahan, M., & Barrett, C. B. (2017). Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy, 67, 12-25. https://doi.org/10.1016/j.foodpol.2016.09.010 DOI: https://doi.org/10.1016/j.foodpol.2016.09.010

Singh, K. M., Kumar, A., & Singh, R. K. (2015). Role of Information and Communication Technologies in Indian agriculture: An overview. SSRN Electronic Journal. MPRA Paper No. 62413. https://doi.org/10.2139/ssrn.2570710 DOI: https://doi.org/10.2139/ssrn.2570710

Spencer, A. (2021). Technology adoption in the Caribbean tourism industry: Analyzing service delivery in the digital age. Palgrave Macmillan. https://doi.org/10.1007/978-3-030-61584-0 DOI: https://doi.org/10.1007/978-3-030-61584-0

Straver, L., Martinović, B., Nijs, T., Nooitgedagt, W., & Storz, N. (2023). Who believes the country belongs to their ethnic ingroup? The background characteristics of 'owners' and their support for stricter immigration policies across three Western societies. Journal of Social and Political Psychology, 11(2), 570-585. https://doi.org/10.5964/jspp.10617 DOI: https://doi.org/10.5964/jspp.10617

Strecker, K., Bitzer, V., & Kruijssen, F. (2022). Critical stages for post-harvest losses and nutrition outcomes in the value chains of bush beans and nightshade in Uganda. Food Security, 14(2), 411-426. https://doi.org/10.1007/s12571-021-01244-x DOI: https://doi.org/10.1007/s12571-021-01244-x

Swart, R., Levers, C., Davis, J. T., & Verburg, P. H. (2023). Meta-analyses reveal the importance of socio-psychological factors for farmers' adoption of sustainable agricultural practices. One Earth, 6(12), 1771-1783. DOI: https://doi.org/10.1016/j.oneear.2023.10.028

https://doi.org/10.1016/j.oneear.2023.10.028

Taku-Forchu, N., Lambert, M. D., Retallick, M. S., Ulmer, J. D., & Opit, G. P. (2023). Factors influencing maize farmers' adoption and use intensity of hermetic storage bags in Dormaa, Ghana. Journal of International Agricultural and Extension Education, 30(3), 47-62. https://doi.org/10.4148/2831-5960.1134 DOI: https://doi.org/10.4148/2831-5960.1134

Tanaka, S., & Matsui, H. (2023). Variable screening using factor analysis for high-dimensional data with multicollinearity. arXiv Preprint, arXiv:2306.05702. https://arxiv.org/abs/2306.05702

Tanko, M. (2021). Technology adoption, technical efficiency, and the welfare of rice farmers in Northern Ghana (Doctoral dissertation, University of Newcastle, Australia).

URT. (2019). National postharvest management strategy. Ministry of Agriculture, Dodoma.

Vijitwrannont, A., Pichyangkura, R., & Somboonsavatdee, A. (2023). Theoretical framework to accelerate adoption and diffusion of the new theory farming practice for sustainable agriculture in Thailand. International Journal of Economic Policy in Emerging Economies, 18(3-4), 296-306. https://doi.org/10.1504/ijepee.2023.136312 DOI: https://doi.org/10.1504/IJEPEE.2023.136312

Vs, B., Ar, M., Aashif, M., & Manju, M. (2024). Determining the underlying factors of chronic liver disease through factor analysis. In 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications: Healthcare and Internet of Things (AIMLA) (pp. 801-806). IEEE. DOI: https://doi.org/10.1109/AIMLA59606.2024.10531357

https://doi.org/10.1109/AIMLA59606.2024.10531357

Waiswa, D., Muriithi, B. W., Murage, A. W., Ireri, D. M., Maina, F., Chidawanyika, F., & Yavuz, F. (2025). The role of social-psychological factors in the adoption of push-pull technology by small-scale farmers in East Africa: Application of the theory of planned behaviour. Heliyon, 11(1), e41449. DOI: https://doi.org/10.1016/j.heliyon.2024.e41449

https://doi.org/10.1016/j.heliyon.2024.e41449

Wisdom, J. P., Chor, K. H. B., Hoagwood, K. E., & Horwitz, S. M. (2014). Innovation adoption: A review of theories and constructs. Administration and Policy in Mental Health and Mental Health Services Research, 41(4), 480-502. DOI: https://doi.org/10.1007/s10488-013-0486-4

https://doi.org/10.1007/s10488-013-0486-4

Wuiya, N. C. Z., Silayo, N. V. C., Nyamete, N. F., & Majubwa, N. R. O. (2022). The effect of harvest, sorting and drying practices on aflatoxin contamination of maize. International Journal of Scientific Research Updates, 4(2), 63-72. DOI: https://doi.org/10.53430/ijsru.2022.4.2.0150

https://doi.org/10.53430/ijsru.2022.4.2.0150

Yamane, T. (1967). Statistics: An introductory analysis (2nd ed.). Harper and Row.

Zakaria, H. (2018). Determinants of adoption of improved maize technology among smallholder maize farmers in the Bawku West District of the Upper East Region of Ghana. Development, 3(6).

Zheng, H., Ma, J., Yao, Z., & Hu, F. (2022). How does social embeddedness affect farmers' adoption behaviour of low-carbon agricultural technology? Evidence from Jiangsu province, China. Frontiers in Environmental Science, 10, 909803. https://doi.org/10.3389/fenvs.2022.909803 DOI: https://doi.org/10.3389/fenvs.2022.909803

Published

2025-04-05

How to Cite

Sanga, A. Y., Kayunze, K. A., & Msinde, J. V. (2025). Motivational Determinants of Adoption of Tarpaulins and Hermetic Bags for Maize Drying and Storage in Rukwa and Katavi Regions, Tanzania. African Journal of Empirical Research, 6(2), 26–41. https://doi.org/10.51867/ajernet.6.2.3