On Bayesian Generalized Linear Mixed Modeling of Cholera Risk Factors: A Case Study of Masvingo Province, Zimbabwe

https://doi.org/10.51867/ajernet.maths.6.2.25

Authors

Keywords:

Cholera Risk Factors, Geospatial Analysis, Public Health Intervention, Seasonal Risk, Vulnerable Populations

Abstract

Cholera remains a significant public health threat in Masvingo, Zimbabwe, particularly in districts with inadequate water, sanitation and healthcare infrastructure. This study applies a Bayesian Generalised Linear Mixed Model (BGLMM) to analyse key risk factors associated with cholera incidence across seven districts (Masvingo, Chivi, Zaka, Bikita, Gutu, Mwenezi and Chiredzi) in Masvingo Province, Zimbabwe, during the 2023/ 2024 outbreak. Descriptive statistics show that cholera affects a young population with an average age of 24.6 years. The average distance to a health facility is 5.95km, indicating potential challenges in accessing healthcare. The frequency distributions reveal that 60.9% of the sampled population reported cholera cases. Significant fixed-effect predictors include gender, access to health facilities and seasonal risk, with the wet season posing a substantially higher risk (Estimate = 6.143, 95% CI: 3.649–9.114). Random effects suggest district-level variations, with Masvingo showing the highest risk deviation, followed by Chiredzi and Mwenezi. These findings were supported by a geospatial cholera case density heatmap, visualising concentrated high-risk zones (dark red) in the three districts. Chivi, Zaka, Bikita and Gutu appear as lighter spots, suggesting lower cholera intensity. Model fit statistics, Widely Applicable Information Criterion (WAIC) (110.115) and Leave-One-Out Cross Validation (LOO) (112.700), validate the model`s adequacy for evaluating cholera determinants. The study highlights the urgent need for integrated public health strategies, including infrastructure development, community health education and targeted interventions to curb cholera incidence. Such efforts will enhance resilience and reduce cholera incidence among vulnerable populations in Masvingo Province.

Dimensions

Ayling, S., Milusheva, S., Maidei Kashangura, F., Hoo, Y. R., Sturrock, H., & Joseph, G. (2023). A stitch in time: The importance of water and sanitation services (WSS) infrastructure maintenance for cholera risk: A geospatial analysis in Harare, Zimbabwe. PLOS Neglected Tropical Diseases, 17(6), e0011353. https://doi.org/10.1371/journal.pntd.0011353 DOI: https://doi.org/10.1371/journal.pntd.0011353

Azman, A. S., Moore, S. M., Rumunu, J., Abubakar, A., West, H., Sack, D. A., & Lessler, J. (2020). Micro-hotspots of risk in urban cholera outbreaks. The Lancet, 395(10232), 120-124. https://doi.org/10.1016/S0140-6736(19)32937-6

Chikoto, G., & Hughes, G. (2019). Spatial analysis of cholera outbreaks in Zimbabwe. African Journal of Epidemiology, 14(3), 221-231.

Cowman, G., Otipo, S., Njeru, I., Achia, T., Thirumurthy, H., Bartram, J., & Kioko, J. (2017). Factors associated with cholera in Kenya, 2008-2013. Pan African Medical Journal, 28(1), 156. https://doi.org/10.11604/pamj.2017.28.101.12806 DOI: https://doi.org/10.11604/pamj.2017.28.101.12806

Diggle, P. J., & Giorgi, E. (2019). Model-based geostatistics for global public health: Methods and applications. CRC Press. https://doi.org/10.1201/9781315188492 DOI: https://doi.org/10.1201/9781315188492

Dureab, F., Jahn, A., Krisam, J., Dureab, A., Zain, O., Al-Awlaqi, S., & Müller, O. (2019). Risk factors associated with the recent cholera outbreak in Yemen: A case-control study. Epidemiology and Health, 41, e2019015. https://doi.org/10.4178/epih.e2019015 DOI: https://doi.org/10.4178/epih.e2019015

Elimian, K. O., Musah, A., Ochu, C. L., Onwah, S. S., Oyebanji, O., Yennan, S., Fall, I. S., Yao, M., Chukwuji, M., Ekeng, E., Abok, P., Omar, L. H., Balde, T., Kankia, A., Williams, N., Mutbam, K., Dhamari, N., Okudo, I., Alemu, W., Peter, C., … Ihekweazu, C. (2020). Identifying and quantifying the factors associated with cholera-related death during the 2018 outbreak in Nigeria. The Pan African medical journal, 37, 368. https://doi.org/10.11604/pamj.2020.37.368.20981 DOI: https://doi.org/10.11604/pamj.2020.37.368.20981

Emch, M., Yunus, M., Escamilla, V., Feldacker, C., & Ali, M. (2017). Local environmental predictors of cholera in Bangladesh and their implications for global control. Journal of Infectious Diseases, 218(Suppl 3), S180-S186. https://doi.org/10.1093/infdis/jiy520 DOI: https://doi.org/10.1093/infdis/jiy520

Fong, Y., Rue, H., & Wakefield, J. (2021). Bayesian inference for generalised linear mixed models. Biostatistics, 22(1), 69-82. https://doi.org/10.1093/biostatistics/kxz010 DOI: https://doi.org/10.1093/biostatistics/kxz010

Held, L., & Rue, H. (2022). Conditional and intrinsic autoregressive models for disease mapping. Statistical Methods in Medical Research, 31(2), 202-217. https://doi.org/10.1177/09622802211048248

Lawson, A. B. (2021). Bayesian disease mapping: Hierarchical modelling in spatial epidemiology (3rd ed.). CRC Press.

Leo, J., Luhanga, E., & Michael, K. (2019). Machine learning model for an imbalanced cholera dataset in Tanzania. The Scientific World Journal, 2019, 9397578. https://doi.org/10.1155/2019/9397578 DOI: https://doi.org/10.1155/2019/9397578

Li, Y., Wakefield, J., & Touloumi, G. (2020). A comparison of Bayesian spatio-temporal models for disease mapping. Statistical Methods in Medical Research, 29(5), 1230-1253. https://doi.org/10.1177/0962280219861582

Luquero, F. J., Banga, C. N., Remartinez, D., Palma, P. P., Baron, E., Grais, R. F., & Checchi, F. (2019). Estimating the impact of emergency cholera vaccination in Haiti: A modelling study. PLOS Medicine, 16(2), e1002747. https://doi.org/10.1371/journal.pmed.1002747 DOI: https://doi.org/10.1371/journal.pmed.1002747

Moore, S. M., Azman, A. S., Zaitchik, B. F., Mintz, E. D., Brunkard, J. M., & Legros, D. (2018). El Niño and the shifting geography of cholera in Africa. Proceedings of the National Academy of Sciences, 115(9), 2210-2215. https://doi.org/10.1073/pnas.1711313115

Mugabe, T., Masuku, S., & Sibanda, P. (2021). Cholera outbreaks in Zimbabwe: A review of risk factors. African Journal of Public Health, 15(2), 203-215.

Munyenyiwa, A., Musuka, G., Makuvaza, M. J. M., Mucheri, T., & Midzi, N. (2022). A review of the 2008/2009 and 2018/2019 cholera outbreaks in Zimbabwe: Call for public health action. Journal of Infectious Diseases and Epidemiology, 8, 269. https://doi.org/10.23937/2474-3658/1510269 DOI: https://doi.org/10.23937/2474-3658/1510269

Ngereza, C., Katapa, R. S., & Mniachi, A. R. (2021). Environmental factors associated with re-emergency of cholera in Tanzania using Poisson regression models. Tanzania Journal of Sociology, 7(1), 80-100.

Rebaudet, S., Sudre, B., Faucher, B., & Piarroux, R. (2019). Environmental determinants of cholera outbreaks in inland Africa: A systematic review. The Journal of Infectious Diseases, 219(12), 1935-1944. https://doi.org/10.1093/infdis/jiz129 DOI: https://doi.org/10.1093/infdis/jiz129

Rinaldo, A., Blokesch, M., Bertuzzo, E., Mari, L., & Gatto, M. (2020). Modelling and analysing the transmission dynamics of cholera at two spatial scales. Infectious Disease Modelling, 5, 689-705. https://doi.org/10.1016/j.idm.2020.08.001 DOI: https://doi.org/10.1016/j.idm.2020.08.001

Traerup, S. L., Ortiz, R. A., & Markandya, A. (2020). The health impacts of climate change: A study of cholera in Tanzania. Global Environmental Change, 60, 102042. https://doi.org/10.1016/j.gloenvcha.2019.102042

World Health Organisation. (2021). Ending cholera: A global roadmap to 2030. World Health Organisation.

World Health Organisation. (2023, December). WHO Zimbabwe Cholera Update.

World Health Organisation. (2024, December). Cholera Report.

Zimbabwe Meteorological Services Department. (2023). Annual rainfall and temperature data. Zimbabwe Meteorological Services Department.

Zimbabwe Ministry of Health and Child Care. (2023). Annual report on communicable diseases. Ministry of Health and Child Care.

Zimbabwe National Statistics Agency. (2022). Poverty, income, consumption, and expenditure survey 2022. Zimbabwe National Statistics Agency.

Published

2025-05-01

How to Cite

Moyo, E., Sibanda, S., Chimhondoro, A., Chakauya, S., & Jani, D. (2025). On Bayesian Generalized Linear Mixed Modeling of Cholera Risk Factors: A Case Study of Masvingo Province, Zimbabwe. African Journal of Empirical Research, 6(2), 283–296. https://doi.org/10.51867/ajernet.maths.6.2.25