Antibiotic Resistance in Mycobacterium Tuberculosis and Non-Tuberculous Mycobacteria

https://doi.org/10.51867/ajernet.5.4.83

Authors

Keywords:

Antibiotic Resistance, Mycobacterium Tuberculosis, Mycobacterial Infections

Abstract

Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacteria (NTM) antibiotic resistance presents an important challenge to the treatment of mycobacterial infections. The therapeutic approaches are complicated by the resistance of both MTB and NTM to a variety of antibiotics. Resistance to first-line drugs such as isoniazid, rifampicin, ethambutol, and streptomycin has been consistently increasing in MTB, underscoring the necessity of effective treatment strategies. Conversely, the necessity of species-specific treatment regimens is underscored by the high resistance rates of NTM species, such as Mycobacterium avium complex, M. kansasii, and M. abscessus complex, to commonly used anti-tuberculosis pharmaceuticals. A combination of intrinsic and acquired factors are involved in the mechanisms of antibiotic resistance in these mycobacteria. Features such as biofilm formation, thick cell walls, and reduced drug uptake are responsible for intrinsic resistance in NTM, whereas acquired resistance can develop as a result of protracted antibiotic exposure. Understanding these resistance mechanisms is essential for the development of new therapies and the prevention of the increasing prevalence of drug resistance in mycobacterial infections. The significance of continuous surveillance, species-specific treatment protocols, and the development of novel antimicrobial agents to effectively manage mycobacterial diseases is emphasized by the prevalence of antibiotic resistance in MTB and NTM. This review article focuses on the molecular mechanisms that have resulted in the development of resistance in both MTB and NTMs, as well as the extent to which various classes of antimycobacterial drugs act.

Dimensions

Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al‐Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022 Aug 10;36(9):e24655.

https://doi.org/10.1002/jcla.24655 DOI: https://doi.org/10.1002/jcla.24655

Charan AS, Gupta N, Dixit R, Arora P, Patni T, Antony K, et al. Pattern of InhA and KatG mutations in isoniazid monoresistant Mycobacterium tuberculosis isolates. Lung India : Official Organ of Indian Chest Society. 2020 Jun;37(3):227.

https://doi.org/10.4103/lungindia.lungindia_204_19 DOI: https://doi.org/10.4103/lungindia.lungindia_204_19

Saxena S, Spaink HP, Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology (Basel). 2021 Jan 29;10(2):96.

https://doi.org/10.3390/biology10020096 DOI: https://doi.org/10.3390/biology10020096

CDC. Global TB Overview [Internet]. 2023 [cited 2024 May 27]. Available from: https://www.cdc.gov/globalhivtb/who-we-are/about-us/globaltb/globaltb.html

Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015 Sep;5(9):a017863. https://doi.org/10.1101/cshperspect.a017863 DOI: https://doi.org/10.1101/cshperspect.a017863

Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res. 2020 Sep;152(3):185-226. https://doi.org/10.4103/ijmr.IJMR_902_20 DOI: https://doi.org/10.4103/ijmr.IJMR_902_20

Tarashi S, Siadat SD, Fateh A. Nontuberculous Mycobacterial Resistance to Antibiotics and Disinfectants: Challenges Still Ahead. Biomed Res Int. 2022 Feb 26;2022:8168750.

https://doi.org/10.1155/2022/8168750 DOI: https://doi.org/10.1155/2022/8168750

Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel). 2022 Oct 18;11(10):1431.

https://doi.org/10.3390/antibiotics11101431 DOI: https://doi.org/10.3390/antibiotics11101431

Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol [Internet]. 2018 Sep 12 [cited 2024 May 27];9. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.02179/full

https://doi.org/10.3389/fmicb.2018.02179 DOI: https://doi.org/10.3389/fmicb.2018.02179

Xiong XS, Zhang XD, Yan JW, Huang TT, Liu ZZ, Li ZK, et al. Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. IDR. 2024 Apr 12;17:1491-506.

https://doi.org/10.2147/IDR.S457308 DOI: https://doi.org/10.2147/IDR.S457308

Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel). 2023 Nov 15;16(11):1615. https://doi.org/10.3390/ph16111615 DOI: https://doi.org/10.3390/ph16111615

Belete TM. Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiol Insights. 2022 May 23;15:11786361221099878. https://doi.org/10.1177/11786361221099878 DOI: https://doi.org/10.1177/11786361221099878

Schroeder EK, de Souza N, Santos DS, Blanchard JS, Basso LA. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotechnol. 2002 Sep;3(3):197-225. https://doi.org/10.2174/1389201023378328 DOI: https://doi.org/10.2174/1389201023378328

Bald D, Villellas C, Lu P, Koul A. Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery. mBio. 2017 Apr 11;8(2):e00272-17. https://doi.org/10.1128/mBio.00272-17 DOI: https://doi.org/10.1128/mBio.00272-17

Kapp E, Joubert J, Sampson SL, Warner DF, Seldon R, Jordaan A, et al. Antimycobacterial Activity, Synergism, and Mechanism of Action Evaluation of Novel Polycyclic Amines against Mycobacterium tuberculosis. Adv Pharmacol Pharm Sci. 2021 Jun 11;2021:5583342. DOI: https://doi.org/10.1155/2021/5583342

Moodley R, Mashaba C, Rakodi GH, Ncube NB, Maphoru MV, Balogun MO, et al. New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals (Basel). 2022 May 5;15(5):576. https://doi.org/10.3390/ph15050576 DOI: https://doi.org/10.3390/ph15050576

Liu P, Fan S, Wang B, Cao R, Wang X, Li S, et al. Design, synthesis and biological evaluation of novel triaryldimethylaminobutan-2-ol derivatives against Mycobacterium tuberculosis. Bioorganic Chemistry. 2020 Sep 1;102:104054. https://doi.org/10.1016/j.bioorg.2020.104054 DOI: https://doi.org/10.1016/j.bioorg.2020.104054

Ramón-García S, Martín C, Thompson CJ, Aínsa JA. Role of the Mycobacterium tuberculosis P55 Efflux Pump in Intrinsic Drug Resistance, Oxidative Stress Responses, and Growth. Antimicrob Agents Chemother. 2009 Sep;53(9):3675-82. https://doi.org/10.1128/AAC.00550-09 DOI: https://doi.org/10.1128/AAC.00550-09

Espinal MA, Kim SJ, Suarez PG, Kam KM, Khomenko AG, Migliori GB, et al. Standard Short-Course Chemotherapy for Drug-Resistant TuberculosisTreatment Outcomes in 6 Countries. JAMA. 2000 May 17;283(19):2537-45. https://doi.org/10.1001/jama.283.19.2537 DOI: https://doi.org/10.1001/jama.283.19.2537

Pourakbari B, Mamishi S, Mohammadzadeh M, Mahmoudi S. First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review. Front Microbiol. 2016 Jul 28;7:1139. https://doi.org/10.3389/fmicb.2016.01139 DOI: https://doi.org/10.3389/fmicb.2016.01139

Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep. 2017 Oct 9;7(1):12807. https://doi.org/10.1038/s41598-017-12718-4 DOI: https://doi.org/10.1038/s41598-017-12718-4

Vilchèze C, Jacobs WR. The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J Mol Biol. 2019 Aug 23;431(18):3450-61. https://doi.org/10.1016/j.jmb.2019.02.016 DOI: https://doi.org/10.1016/j.jmb.2019.02.016

Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, et al. NEW TARGET FOR INHIBITION OF BACTERIAL RNA POLYMERASE: "SWITCH REGION." Current opinion in microbiology. 2011 Oct;14(5):532. https://doi.org/10.1016/j.mib.2011.07.030 DOI: https://doi.org/10.1016/j.mib.2011.07.030

Lamont EA, Baughn AD. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine. 2019 Oct 25;49:374-80. https://doi.org/10.1016/j.ebiom.2019.10.014 DOI: https://doi.org/10.1016/j.ebiom.2019.10.014

Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites. 2024 Jan;14(1):63. https://doi.org/10.3390/metabo14010063 DOI: https://doi.org/10.3390/metabo14010063

Vilchèze C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Applied Sciences. 2020 Jan;10(7):2278. https://doi.org/10.3390/app10072278 DOI: https://doi.org/10.3390/app10072278

Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology. 2022;20(11):685. https://doi.org/10.1038/s41579-022-00731-y DOI: https://doi.org/10.1038/s41579-022-00731-y

Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci. 2023 Mar 8;24(6):5202. https://doi.org/10.3390/ijms24065202 DOI: https://doi.org/10.3390/ijms24065202

Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020 Jun 17;27:74. https://doi.org/10.1186/s12929-020-00667-6 DOI: https://doi.org/10.1186/s12929-020-00667-6

Loddenkemper R, Sagebiel D, Brendel A. Strategies against multidrug-resistant tuberculosis. European Respiratory Journal. 2002 Jul 1;20(36 suppl):66s-77s. https://doi.org/10.1183/09031936.02.00401302 DOI: https://doi.org/10.1183/09031936.02.00401302

Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An Overview. Cold Spring Harb Perspect Med. 2016 Jun;6(6):a027029.

https://doi.org/10.1101/cshperspect.a027029 DOI: https://doi.org/10.1101/cshperspect.a027029

Hooper DC, Jacoby GA. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med. 2016 Sep;6(9):a025320. https://doi.org/10.1101/cshperspect.a025320 DOI: https://doi.org/10.1101/cshperspect.a025320

Mulubwa M, Mugabo P. Steady‐state population pharmacokinetics of terizidone and its metabolite cycloserine in patients with drug‐resistant tuberculosis. Br J Clin Pharmacol. 2019 Sep;85(9):1946-56. https://doi.org/10.1111/bcp.13975 DOI: https://doi.org/10.1111/bcp.13975

Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, et al. para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. J Biol Chem. 2013 Aug 9;288(32):23447-56. https://doi.org/10.1074/jbc.M113.475798 DOI: https://doi.org/10.1074/jbc.M113.475798

Tang S, Yao L, Hao X, Liu Y, Zeng L, Liu G, et al. Clofazimine for the Treatment of Multidrug-Resistant Tuberculosis: Prospective, Multicenter, Randomized Controlled Study in China. Clinical Infectious Diseases. 2015 May 1;60(9):1361-7. https://doi.org/10.1093/cid/civ027 DOI: https://doi.org/10.1093/cid/civ027

Stadler JAM, Maartens G, Meintjes G, Wasserman S. Clofazimine for the treatment of tuberculosis. Front Pharmacol. 2023 Feb 2;14:1100488. https://doi.org/10.3389/fphar.2023.1100488 DOI: https://doi.org/10.3389/fphar.2023.1100488

Yuan S, Yin X, Meng X, Chan J, Ye ZW, Riva L, et al. Clofazimine is a broad-spectrum coronavirus inhibitor that antagonizes SARS-CoV-2 replication in primary human cell culture and hamsters. Res Sq. 2020 Oct 7;rs.3.rs-86169. https://doi.org/10.21203/rs.3.rs-86169/v1 DOI: https://doi.org/10.21203/rs.3.rs-86169/v1

Xavier AS, Lakshmanan M. Delamanid: A new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5(3):222-4.

https://doi.org/10.4103/0976-500X.136121 DOI: https://doi.org/10.4103/0976-500X.136121

Gan WC, Ng HF, Ngeow YF. Mechanisms of Linezolid Resistance in Mycobacteria. Pharmaceuticals (Basel). 2023 May 24;16(6):784.

https://doi.org/10.3390/ph16060784 DOI: https://doi.org/10.3390/ph16060784

Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis. 2015 Jul;6(4):170-84. https://doi.org/10.1177/2040622315582325 DOI: https://doi.org/10.1177/2040622315582325

Thakare R, Dasgupta A, Chopra S. Pretomanid for the treatment of pulmonary tuberculosis. Drugs Today (Barc). 2020 Oct;56(10):655-68.

https://doi.org/10.1358/dot.2020.56.10.3161237 DOI: https://doi.org/10.1358/dot.2020.56.10.3161237

WHO. Treatment strategies for MDR-TB and XDR-TB. In: Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis [Internet]. World Health Organization; 2014 [cited 2024 May 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK247431/

Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol [Internet]. 2022 Oct 5 [cited 2024 May 27];12. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2022.1027394 DOI: https://doi.org/10.3389/fcimb.2022.1027394

Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiology Reviews. 2017 May 1;41(3):354-73. https://doi.org/10.1093/femsre/fux011 DOI: https://doi.org/10.1093/femsre/fux011

Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci. 2022 Dec 13;23(24):15779. https://doi.org/10.3390/ijms232415779 DOI: https://doi.org/10.3390/ijms232415779

Shi J, Liu Y, Wu T, Li L, Han S, Peng X, et al. Spontaneous mutational patterns and novel mutations for bedaquiline and clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2023;11(5):e00090-23. https://doi.org/10.1128/spectrum.00090-23 DOI: https://doi.org/10.1128/spectrum.00090-23

Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, et al. Pharmacogenomics of GPCR Drug Targets. Cell. 2018 Jan 11;172(1-2):41-54.e19. https://doi.org/10.1016/j.cell.2017.11.033 DOI: https://doi.org/10.1016/j.cell.2017.11.033

Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms. 2023 Jun 19;11(6):1614. https://doi.org/10.3390/microorganisms11061614 DOI: https://doi.org/10.3390/microorganisms11061614

Pai M, Furin J. Tuberculosis innovations mean little if they cannot save lives. Elife. 2017 May 2;6:e25956. https://doi.org/10.7554/eLife.25956 DOI: https://doi.org/10.7554/eLife.25956

Prasad S, V P S, Abbas HS, Kotakonda M. Mechanisms of Antimicrobial Resistance: Highlights on Current Advance Methods for Detection of Drug Resistance and Current Pipeline Antitubercular Agents. Curr Pharm Biotechnol. 2022;23(15):1824-36. https://doi.org/10.2174/1389201023666220318104042 DOI: https://doi.org/10.2174/1389201023666220318104042

Bottalico L, Charitos IA, Potenza MA, Montagnani M, Santacroce L. The war against bacteria, from the past to present and beyond. Expert Rev Anti Infect Ther. 2022 May;20(5):681-706. https://doi.org/10.1080/14787210.2022.2013809 DOI: https://doi.org/10.1080/14787210.2022.2013809

Ehrt S, Schnappinger D, Rhee KY. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol. 2018 Aug;16(8):496-507. https://doi.org/10.1038/s41579-018-0013-4 DOI: https://doi.org/10.1038/s41579-018-0013-4

Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015 May;13(5):298-309. https://doi.org/10.1038/nrmicro3448 DOI: https://doi.org/10.1038/nrmicro3448

Yang Y, Wu J. Significance of the Differential Peptidome in Multidrug-Resistant Tuberculosis. Biomed Res Int. 2019;2019:5653424. https://doi.org/10.1155/2019/5653424 DOI: https://doi.org/10.1155/2019/5653424

Srivatsan A, Wang JD. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol. 2008 Apr;11(2):100-5. https://doi.org/10.1016/j.mib.2008.02.001 DOI: https://doi.org/10.1016/j.mib.2008.02.001

Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One. 2011;6(8):e23479. https://doi.org/10.1371/journal.pone.0023479 DOI: https://doi.org/10.1371/journal.pone.0023479

Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. Journal of bacteriology [Internet]. 2002 May [cited 2024 May 30];184(9). Available from: https://pubmed.ncbi.nlm.nih.gov/11948165, https://doi.org/10.1128/JB.184.9.2500-2520.2002 DOI: https://doi.org/10.1128/JB.184.9.2500-2520.2002

Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, et al. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol. 2008 Jun;68(5):1128-48. https://doi.org/10.1111/j.1365-2958.2008.06229.x DOI: https://doi.org/10.1111/j.1365-2958.2008.06229.x

Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009 Dec;7(12):845-55. https://doi.org/10.1038/nrmicro2236 DOI: https://doi.org/10.1038/nrmicro2236

Mishra J, Rajput R, Singh K, Bansal A, Misra K. Antioxidant-Rich Peptide Fractions Derived from High-Altitude Chinese Caterpillar Medicinal Mushroom Ophiocordyceps sinensis (Ascomycetes) Inhibit Bacterial Pathogens. Int J Med Mushrooms. 2019;21(2):155-68.

https://doi.org/10.1615/IntJMedMushrooms.2019030013 DOI: https://doi.org/10.1615/IntJMedMushrooms.2019030013

De Maio F, Battah B, Palmieri V, Petrone L, Corrente F, Salustri A, et al. PE_PGRS3 of Mycobacterium tuberculosis is specifically expressed at low phosphate concentration, and its arginine-rich C-terminal domain mediates adhesion and persistence in host tissues when expressed in Mycobacterium smegmatis. Cell Microbiol. 2018 Dec;20(12):e12952. https://doi.org/10.1111/cmi.12952 DOI: https://doi.org/10.1111/cmi.12952

Dutta NK, Klinkenberg LG, Vazquez MJ, Segura-Carro D, Colmenarejo G, Ramon F, et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci Adv. 2019 Mar;5(3):eaav2104. https://doi.org/10.1126/sciadv.aav2104 DOI: https://doi.org/10.1126/sciadv.aav2104

Dahl JL, Kraus CN, Boshoff HIM, Doan B, Foley K, Avarbock D, et al. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10026-31. https://doi.org/10.1073/pnas.1631248100 DOI: https://doi.org/10.1073/pnas.1631248100

Dutta NK, Karakousis PC. Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev. 2014 Sep;78(3):343-71. https://doi.org/10.1128/MMBR.00010-14 DOI: https://doi.org/10.1128/MMBR.00010-14

Basaraba RJ, Ojha AK. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. Microbiol Spectr. 2017 Jun;5(3). https://doi.org/10.1128/microbiolspec.TBTB2-0024-2016 DOI: https://doi.org/10.1128/microbiolspec.TBTB2-0024-2016

Chakraborty P, Kumar A. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microb Cell. 2019 Jan 18;6(2):105-22. https://doi.org/10.15698/mic2019.02.667 DOI: https://doi.org/10.15698/mic2019.02.667

Petchiappan A, Naik SY, Chatterji D. RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation. J Bacteriol. 2020 Jan 2;202(2):e00444-19. https://doi.org/10.1128/JB.00444-19 DOI: https://doi.org/10.1128/JB.00444-19

Okoi C, Anderson STB, Antonio M, Mulwa SN, Gehre F, Adetifa IMO. Non-tuberculous Mycobacteria isolated from Pulmonary samples in sub-Saharan Africa - A Systematic Review and Meta Analyses. Sci Rep. 2017 Sep 20;7(1):12002. https://doi.org/10.1038/s41598-017-12175-z DOI: https://doi.org/10.1038/s41598-017-12175-z

Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016 Nov 11;354(6313):751-7.

Faverio P, Stainer A, Bonaiti G, Zucchetti SC, Simonetta E, Lapadula G, et al. Characterizing Non-Tuberculous Mycobacteria Infection in Bronchiectasis. Int J Mol Sci. 2016 Nov 16;17(11):1913. https://doi.org/10.3390/ijms17111913 DOI: https://doi.org/10.3390/ijms17111913

Ceyhan İ, Özkara Ş, Güler MZ, Dulkar G, Altınsoy R, Vezir S. [Frequently Isolated Slow Growing Nontuberculous Mycobacteria from Pulmonary Samples and Evaluation of Drug Susceptibility Testing Results in a Referral Hospital in Turkey]. Mikrobiyol Bul. 2019 Jul;53(3):330-5. https://doi.org/10.5578/mb.68091 DOI: https://doi.org/10.5578/mb.68091

Brown-Elliott BA, Woods GL. Antimycobacterial Susceptibility Testing of Nontuberculous Mycobacteria. J Clin Microbiol. 2019 Oct;57(10):e00834-19. https://doi.org/10.1128/JCM.00834-19 DOI: https://doi.org/10.1128/JCM.00834-19

Kwon YS, Daley CL, Koh WJ. Managing antibiotic resistance in nontuberculous mycobacterial pulmonary disease: challenges and new approaches. Expert Rev Respir Med. 2019 Sep;13(9):851-61. https://doi.org/10.1080/17476348.2019.1638765 DOI: https://doi.org/10.1080/17476348.2019.1638765

Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today. 2018 Aug;23(8):1502-19.

https://doi.org/10.1016/j.drudis.2018.04.001 DOI: https://doi.org/10.1016/j.drudis.2018.04.001

Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infection, Genetics and Evolution. 2019 Aug 1;72:169-82. https://doi.org/10.1016/j.meegid.2018.10.003 DOI: https://doi.org/10.1016/j.meegid.2018.10.003

Moon SM, Park HY, Kim SY, Jhun BW, Lee H, Jeon K, et al. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrob Agents Chemother. 2016 Nov;60(11):6758-65.

https://doi.org/10.1128/AAC.01240-16 DOI: https://doi.org/10.1128/AAC.01240-16

Published

2024-11-15

How to Cite

Wamalwa, R., Guyah, B., & Shaviya, N. (2024). Antibiotic Resistance in Mycobacterium Tuberculosis and Non-Tuberculous Mycobacteria. African Journal of Empirical Research, 5(4), 1001–1010. https://doi.org/10.51867/ajernet.5.4.83