A Between-Host Cholera Mathematical Model Incorporating Temperature Dependence

https://doi.org/10.51867/ajernet.Mathematics.5.4.8

Authors

  • Kennedy Jackob Owade Department of Mathematics, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya https://orcid.org/0009-0002-8487-4866
  • Akinyi Okaka Department of Mathematics, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya
  • Frankline Tireito Department of Mathematics, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya https://orcid.org/0000-0002-4106-4022

Keywords:

Between-Host Cholera Model, Temperature dependent Parameter

Abstract

This paper establishes a between-host cholera model with temperature dependent parameter. This is done using system of ODEs to analyse the effect of temperature change on cholera disease. The model analysis reveals that when R0 < 1, the disease free equilibrium point is locally and globally asymptotically. It is also noticed that if R0 > 1, the endemic equilibrium point is locally and globally asymptotically stable. The sensitivity analysis of model parameters shows that R0 ​depends intensively on infection rate of pathogen α1​ normalized with temperature. An increase in infection rate of pathogen α1​ that is dependent on temperature by 10% would increase R0​ by 10% and decreasing it by 10% reduces R0 by 10%; hence, increasing the temperature of the environment where the pathogen lives would help reduce the rate of infection of the pathogen, thus reducing the reproduction number R0​. We conducted numerical simulation of the model in response to temperature changes, and the results indicate that Vibrio cholerae pathogens multiply faster at 23°C but between 23°C < T ≤ 43°C the pathogen multiplication is hindered, therefore, at 23°C, more pathogens are active to cause infection compared to high temperatures.

Dimensions

Dell AI, Pawar S, and Savage VM. (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Nat. Acad. Sci. USA; 108(26):10591-10596. https://doi.org/10.1073/pnas.1015178108 DOI: https://doi.org/10.1073/pnas.1015178108

Mordecai E. A. and Caldwell J. M. et al (2019). Thermal biology of mosquito-borne disease, Ecol. Lett., 22(10), 1690-1708. https://doi.org/10.1111/ele.13335 DOI: https://doi.org/10.1111/ele.13335

Mordecai E. A. and Cohen J. M. et al (2017). Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models, PLOS Neglected Tropical Diseases, 11(4). https://doi.org/10.1371/journal.pntd.0005568 DOI: https://doi.org/10.1371/journal.pntd.0005568

Erin K. Lipp, Anwar Huq, and Rita R. Colwell (2002). Effects of Global Climate on Infectious Disease: the Cholera Model, Clin Microbiol Rev, 15(4), 757-770. https://doi.org/10.1128/CMR.15.4.757-770.2002 DOI: https://doi.org/10.1128/CMR.15.4.757-770.2002

Magombedze G., Ferguson N. M., and Ghani A. C. (2018). A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of anopheles mosquitoes, Parasites Vectors, 11(1). https://doi.org/10.1186/s13071-018-3158-0 DOI: https://doi.org/10.1186/s13071-018-3158-0

Guo H., Li M. Y. and Shuai Z. (2006). Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14, 259-284.

Guo H., Li M. Y. and Shuai Z. (2012). Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72, 261-279. https://doi.org/10.1137/110827028 DOI: https://doi.org/10.1137/110827028

Arquam et al (2019). Integrating Environmental Temperature Conditions into the SIR Model for Vector-Borne Diseases, Complex Networks and Their Applications, 8(1), 412-424. https://doi.org/10.1007/978-3-030-36687-2_34 DOI: https://doi.org/10.1007/978-3-030-36687-2_34

Salisu M. and Usman A. Danbaba (2020). Mathematical Modelling of the effect of Temperature variability on malaria control strategies, Math. Model. Nat. Phenom., 15(65). https://doi.org/10.1051/mmnp/2020044 DOI: https://doi.org/10.1051/mmnp/2020044

Speelmon E.C, Checkley W, Gilman RH, Patz J, Calderon M, Manga S. (2000). Cholera Incidence and El Niño-Related Higher Ambient Temperature. JAMA. 283(23), 3072-3074. doi:10.1001/jama.283.23.3068i DOI: https://doi.org/10.1001/jama.283.23.3072-a

Ngoteya FN., Gyekye YN. (2015). Sensitivity Analysis of parameters in a Competition Model, Apple. Comput Math, 4(5), 363-368.

https://doi.org/10.11648/j.acm.20150405.15 DOI: https://doi.org/10.11648/j.acm.20150405.15

Van den D.P and Watmough J. (2002). Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6

Eunice E. Ukwajunor, Eno E. E. Akarawak and Israel Olutunji Abiala (2002). Mathematical modeling of the impact of temperature variations and immigration on malaria prevalence in Nigeria, International Journal of Biomathematics, 14(08). https://doi.org/10.1142/S1793524521500674 DOI: https://doi.org/10.1142/S1793524521500674

Van den D.P and Watmough J. (2002). Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6 DOI: https://doi.org/10.1016/S0025-5564(02)00108-6

World Health Organization. Cholera vaccines. WHO position paper. 2017; 92(34): 477-500.

Zhisheng Shuai and Van Den Driesche P. (2013). Global Stability of Infectious Disease Models Using Lyapunov Functions, Siam J. Appl. Math; 73(4); pp. 1513-1532. https://doi.org/10.1137/120876642 DOI: https://doi.org/10.1137/120876642

Owade Kennedy Jackob, Okaka Akinyi, Frankline Tireito. (2023) A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination. Discrete Dynamics in Nature and Society. https://doi.org/10.1155/2023/1465228 DOI: https://doi.org/10.1155/2023/1465228

National library of medicine. (2015) Int. J. Environ. Res. Public Health, (12)7; 8034-8074. https://doi.org/10.3390/ijerph120708034 DOI: https://doi.org/10.3390/ijerph120708034

www.who.int/news-room/fact-sheets/detail/cholera?gclid

Center for Health Protection. (2011). Epidemiology, prevention and control of cholera in Hong Kong, CHC; 4-5.

Safieh D. Rebwar, Hamed MH, Saeed MAH, Forough J. (2020). Investigation of water quality in wet and dry seasons under climate change. Ukrainian Journal of Ecology; 10(5): 94-104. https://doi.org/10.15421/2020_212 DOI: https://doi.org/10.15421/2020_212

Published

2024-10-08

How to Cite

Owade, K. J., Okaka, A., & Tireito, F. (2024). A Between-Host Cholera Mathematical Model Incorporating Temperature Dependence. African Journal of Empirical Research, 5(4), 85–101. https://doi.org/10.51867/ajernet.Mathematics.5.4.8