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ABSTRACT 
  

Histogram of Oriented Gradients (HOG) describes an image gradient by calculating vertical and horizontal gradient magnitudes and 

directions. HOG uses a one-dimensional (1D) centered derivative mask [−1, 0, +1] for horizontal gradient and its rotations at 90o 

for vertical gradient. This technique only considers four neighboring pixels while calculating image gradient at a particular pixel. 

Every pixel in an image carries subtle information and therefore all pixels should be considered when deriving image gradient. 

Therefore, given a pixel pi, all its N = 2(d+1) neighbors should be considered when calculating the gradient at distance d from pi. This 

paper proposes Local Directional Histogram of Oriented Gradients (LD-HOG), which, given pixel pi, it calculates the gradient at 
distance d = 1 from pi by considering all the eight neighbors of pi. The proposed operator calculates the image gradient at 0o, 45o, 

90o and 1350. These image gradients are used to generate two HOG histograms. Maximum pooling techniques were applied to 

combine the two histograms. Experimental results on the German traffic sign detection benchmark (GTSDB) dataset show that LD-

HOG (average precision = 0.90, average recall = 0.90 and average F1-score =0.90) out performs HOG (average precision = 0.84, 

average recall = 0.82 and average F1-score = 0.83) in traffic sign recognition. The averages of the two extractors (HOG and LD-

HOG) were calculated from experimental results after applying Support Vector Machine (SVM), Random Forest (RF) and Decision 

Tree (DT) machine learning classifiers. Stratified K-Fold Cross-Validation was done on the proposed LD-HOG using SVM, RF and 

DT. Validation results show that SVM performed better with 99 percent, followed by RF with 96 percent. DT was had 76 percent. 

 

Keywords: Histogram of Oriented Gradients, Local Directional Pattern, Local Directional Histogram of Oriented Gradients, Traffic 

Sign Recognition 

……………………………………………………………………………………………………………………………………….… 

 

I. INTRODUCTION 

 
Self-driving vehicles are becoming increasingly common nowadays as a result of improvements in computer 

vision and auto-mobile technologies. The ability of these vehicles maneuvering safely on busy roads depends heavily 

on their ability to rapidly and accurately detect and recognize traffic signs, making traffic sign recognition an important 
element of self-driving vehicles. Traffic sign recognition techniques help self-driving auto-mobiles and drivers to detect, 

recognize, and understand various road signs like warning signs, prohibitory signs and reservation signs. Traffic Sign 

Recognition (TSR) techniques improve safety of all road users. Road safety research is attracting enormous attention 

around the globe because it is indispensable in protecting human life (World Health Organization, 2018).  
According to a report by the World Health Organization (WHO, 2018), over 1.35 million people lose their lives 

on road accidents, annually, and about 20 million to 50 million are disabled or injured. Most of these road accidents are 

caused by failure to adhere to road rules, driver distraction and failure in detecting traffic signs. To improve safety on 
the road, various initiatives have been taken among them design and development of Advanced Driving Assistance 

Systems (ADAS) that automate tasks like traffic sign recognition and lane departure warning systems. Traffic Sign 

Recognition (TSR) plays a critical role in the robustness and effectiveness of ADAS. Traffic signs have subtle 
discriminating attributes based on which they are localized, detected and recognized. Based on the shape and color, 

traffic signs can be categorized into three classes: i). Caution – they are triangular in shape, with red edge; ii). Mandatory 

– circular in shape, red border/edge, e.g. speed limit signs; iii). Reservation– rectangular in shape with a blue background 
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Figure 1 

Examples of Traffic Sign Categories 

 

1.1 Statement of the Problem 
TSR techniques use visual information like colour and shape to detect and recognize traffic signs. A number of 

TSR techniques have been developed Saouli et al. (2018); Jayaprakasha and KeziSelvaVijilab (2019); Yang et al. (2016); 

Hechri et al. (2014). Nevertheless, performance of computer vision techniques in TSR are adversely affected by factors 
such as variations in illumination, occlusion, adverse weather conditions, road sign deformation, colour deterioration 

due to exposure to UV rays among many other factors An et al. (2024); Khalifa et al. (2024). This paper proposes a new 

TSR technique that includes three stages; i). Region of interest (ROI) detection and extraction ii). Traffic sign group 
classification iii). Recognition of the traffic sign. A new feature extraction technique Local Directional Histogram of 

Oriented Gradient (LD-HOG), an improvement of Histogram of Oriented Gradient (HOG) is proposed and used. 

 

1.2 Research Objective 
To develop a robust machine learning model for traffic sign recognition 

 

II. LITERATURE REVIEW 
 

2.1 Theoretical Review 

Many authors have approached TSR using different approaches. According to Hechri and Mtibaa (2020), TSR 
tasks can be grouped into three: i). Color and shape based ii). Traditional machine learning approach iii). Deep learning. 

An important part of TSR is classification that can be done using different ways including machine learning. A lot of 

research has been on image classification and various models published over the years. Nonetheless, different researches 

and developers have attempted to solve issues related to TSR (Image classification) including occlusion, overfitting, 
class imbalance, and computational cost. 

 

2.2 Empirical Review 
Hechri and Mtibaa (2020) applied two steps for TSR: first, classifying signs to either triangle or circle using 

HOG and Support Vector Machine (SVM), and step two application of CNN for image recognition. Their approach 

performed better than many models, however it is costly computationally. Additionally, the reservation signs were not 

taken care of by this approach. Another hybrid method was proposed by Asha et al. (2022) Decision Tree (DT) and 
Random Forest (RF) classifiers were used on features that were extracted using HOG and Gray Level Co-occurrence 

Matrix (GLCM) shape and texture, respectively. Khalifa et al. (2024) tackled the challenge of occlusion by applying DT 

for color-based and both DT and RF for texture-based classification. Notably, their approach strengthens feature 
extraction and representation; however, the model could struggle to handle complex, high-variance traffic environments. 

In their paper, Li et al. (2022) notes that traffic signs have descriptive and discriminative features easily discovered at a 

lower dimension. They propose a model that applies a simple feature extraction technique (HOG with feature reduction) 
with a lower time cost and performs better in real-world scenarios. Their model incorporates Principal Component 

Analysis (PCA) in the dimension reduction of features on HOG. The reduction is necessary because higher dimensions 

increase the computational cost. The paper notes that applying feature reduction increases the model’s performance in 

Precision, Recall, F1-measure, and Accuracy. Test time for the proposed model was reduced significantly. 
LeCun et al. (1998) introduced Convolutional Neural Networks (CNNs) IN 1998 and has become a staple in 

image classification field. CNN have the ability to automatically extract and learn features from images. Additionally, 

they perform well in recognition of multiclass images. However, CNNs require high computational cost especially when 
working on large dataset. CNNs also struggle when exposed to imbalanced datasets Zhu and Yan (2022). Buda et al. 

(2018) suggest application of dropout layers to address the issue of overfitting. However, CNN still require a lot of 

computational cost when exposed to bigger image dataset. Overfitting problem has been approached using ensemble 
model by combining several decision trees to form a random forest. The output of a model applying random forest and 

HOG feature extractor presented by Lee et al. (2024) had an improved accuracy compared to SVMs and CNN. 

Nonetheless, the computational cost was too high mainly because of the complexity of the decision making of the forest. 

   

Regulatory sign Warning sign Informational sign 
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The model performed better on imbalanced data but struggled on high-dimensional image dataset Approximate Nearest 
Neighbor (ANN) model proposed by Halder et al. (2024) is an improvement of K-Nearest Neighbors (KNN). Despite 

KNN having a simple structure and easily implemented. It also struggled with high dimensional data. Both KNN and 

ANN has a higher computational cost during inference, as it computes distances to all other data points. Notably ANN 
reduced the computational power but the computational power is still high.  

Shi et al. (2024) notes that Recurrent Neural Networks (RNNs) performs well on temporal data. RNN applies 

sequence-based tasks mainly Long Short-Term Memory (LSTM) to image classification by treating image data as a 
sequential task. The main challenge with RNN is limited scalability and high training cost Shi et al. (2024); Razavi et 

al. (2024); Jain et al. (2023). With promised accuracy and precision RNN classification in not done at the pixel level. 

Introduced by Chen et al. (2025), Fully Convolutional Networks (FCNs) tackles the pixel-level classification problems 

including semantic segmentation. Experiment results shows that FCNs perform better than CNNs in image 
classification. However, similar to CNNs, ANN and RNN, FCN require high computational cost when handling large 

dataset. Additionally, their performance can degrade on noisy data. Another major challenge in image classification is 

vanishing gradient problem. This problem grows with deeper network.  
ResNet was introduced by Razavi et al. (2024) to handle the vanishing gradient problem in deep networks. It 

introduced skip connection allowing gradient to easily flow through deep architectures. ResNet-based models have 

achieved significant success in classification tasks. However, they still require substantial computational resources for 

training, and achieving optimal accuracy on highly diverse datasets can be challenging. DenseNet is an improvement 
on ResNet that uses fewer parameters and more effective feature reuse by feed-forwarding connections between each 

layer and every other layer. EfficientNet scales up the network’s depth, width, and resolution more effectively by using 

a compound scaling technique. It greatly decreases the number of parameters while providing excellent performance. 
However, the model requires a careful balancing of scaling parameters, and adjusting this equilibrium can be 

computationally costly Zhu and Newsam (2017); Zhang et al. (2019). Table 1 summaries the performance of some 

common image classification model.  
 

Table 1 

Summary of Machine Learning Approaches to Traffic Sign Recognition 

 

Even though deep learning models like CNNs, ResNet, and EfficientNet have transformed image classification, 
they have some limitations. For example, they typically need a lot of labeled data to train, which may not be available 

in some real-world applications. Additionally, computationally costly models like DenseNet and ResNet might not be 

appropriate for deployment on edge devices or in real-time applications where memory and speed are critical factors. 

Finally, most of these models lack interpretability, especially in CNNs and deep learning-based architectures, making it 
difficult to understand how decisions are made, which is crucial in sensitive fields like healthcare and autonomous 

driving. Models that rely on handcrafted features (e.g., SVMs with HOG) tend to perform worse than end-to-end deep 

learning approaches, especially on complex datasets where feature extraction may not capture all necessary aspects of 
the data. 

Machine learning models for image classification have advanced significantly, more models that are 

computationally effective, able to generalize to a variety of noisy data, and interpretable for high-stakes applications are 
still required. Some of these difficulties might be lessened by combining several strategies and semi-supervised learning. 

 

 

  

Author Algorithm Dataset Accuracy 

Percentage 

Kerim and Efe (2021) (Kerim 

and Efe, 2021) 

ANN GTSRB 95 

Soni et al., (2019) LBP, HOG, PCA, SVM TSRD (Chinese) 84.44 

 (Namyang and Phimoltares, 2020) HOG, CLD, SVM, Random Forest Self-collected (Thai) 93.98 

Li et al., (2022) (Li et al., 2022) Color Histogram, HOG, PCA GTSRB 99.99 

Madani and Yusof (2018)  Border Color, Shape, Pictogram, SVM GTSRB 98.23 

Sapijaszko et al., (2019)  

(Sapijaszko et al., 2019) 

DWT, DCT, MLP BTSD, GTSRB, 

TSRD 

96,95.7,94.9 

Aziz and Youssef (2018)  HOG, CLBP, Gabor, ELM GTSRB, BTSC 99.10, 98.30 

Weng and Chiu (2018) CCL, HOG, SVM GTSRB 90.85 

Wang (2022)  LR, MLP, SVM GTSRB 97.5,98.88,95.51 
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III. METHODOLOGY 
 

The research strategy was simulation and experimental. Simulation and experiments was done in three stages; 

preprocessing, feature extraction and classification. A white bed was set with the following conditions to enable fair 
testing and comparison of LD-HOG, HOG and LDP.  Python 3.8 with the OpenCV, NumPy, and scikit-learn libraries, 

Windows 10, Processor: Intel Core i7 (10th Gen), RAM: 16 GB, GPU: NVIDIA GTX 1650 and IDE: VS Code. The 

Germany Traffic Sign Recognition Benchmark (GTSRB) dataset split at 80 percent and 20 percent was used in training 
and testing of the three feature extractors respectively. Experiments were carried out to determine which preprocessing 

technique would be selected for creation of the model. The preprocessing techniques experimented on were 

interpolation, cropping, filtering, normalization and segmentation. After preprocessing, features were extracted using 

three descriptors; Histogram of Oriented Gradient, Local Directional Pattern and Local Directional Histogram of 
Oriented Gradient. Lastly, three classifiers were used to test the performance of the three descriptors namely; support 

vector machine, random forest and decision tree. 

 

3.1 Local Feature Descriptors 

Local Binary Patterns: Texture features have been widely used in image prediction techniques Sedaghatjoo et 

al. (2024); Panis et al. (2016). Local Binary Patterns (LBP) is an appearance (texture) descriptor able to detect micro-

structure patterns like corners/edges, spots, flat regions and lines on human skin Ojala et al. (1996). Local binary patterns 
is a common texture descriptor used for image classification task, TSR being one of them. Figure 2 shows LBP 

calculation for a 3 × 3 image region. 

 
 

 

 
 

 

 

 
 

  

 
 

Figure 2 

Local Binary Pattern 
 

The Local Binary Pattern (LBP) code from figure 2 can be represented using equation 1  

𝐿𝐵𝑃 = 110010112  =  20310                                                                    …………………………………………………………………….(1) 

 
Where base 2 is the 8-bit binary equivalent of the image while base 10 is the decimal value. 

The binary 8-bit representation of the image is derived using equation 2 below 

𝐿𝐵𝑃𝑝,𝑟(𝑥𝑐 , 𝑦𝑐) = ∑ 2𝑛𝑠(𝑔𝑛 − 𝑔𝑐)

𝑁−1

𝑛=0

 
……………………………………………………………………………….(2) 

And thresholding function τ is defined by equation 3 

τ(𝑥) =  {
 1, 𝑖𝑓 𝑥 ≥ 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

……………………………………………………………………………………(3) 

 

Where 𝑁 = 𝑝 is number of neighbouring pixels, 𝑟 is the distance of neighboring pixels from the central pixel, 

𝑔𝑐  is Gray-value of central pixel, 𝑔𝑛   for 𝑛 = 0,1,2, … 𝑁 − 1 correspond to Gray value of neighbouring pixel on circular 

symmetric neighborhood of distance 𝑅 > 0 and the function τ(𝑥) is a threshold function that generates a binary bit for 

a particular pixel. Joining the 8 bits leads to a binary number. The binary number is converted to decimal and assigned 
to central pixel as its LBP code. Histogram of LBP encoded image is used to represent micro-pattern structures in an 

image. This histogram is defined by equation 4   

𝐻𝑖 = ∑ 𝐼(𝑓(𝑥, 𝑦) = 𝑖)

𝑥,𝑦

, 𝑖 = 0,1,2 … , 2𝑝 − 1 …………………………………………………………………….(4) 
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Where 𝑝 is the number of texture patterns that LBP operator can encode and equation 5 shows how to calculate I 

𝐼(𝑎) =  {
1, 𝑖𝑓 𝑎 𝑖𝑠 𝑇𝑅𝑈𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

…………………………………………………………………………………………..(5) 

 

Ojala et al. (2002) found that when 𝑝 =  8  𝑎𝑛𝑑 𝑟 =  1, about 90% of all texture patterns consist of uniform 
patterns. A pattern with utmost 2 bitwise transition from 1 to 0 and vice versa is referred to as uniform pattern. For 

instance, 10000000, 00000000, 0100000 𝑎𝑛𝑑 11111011  patterns are uniform while 

11010000, 10100101, 𝑎𝑛𝑑 10101101 are not uniform patterns Ojala et al. (1996). Uniform patterns can denote micro-

structures like spot, edge, line or flat region. Original LBP was limited in encoding dominant texture features that span 
a larger region. The descriptor was extended so that it captures features using different neighborhood with different radii 

Ojala et al. (2002). Pixels evenly distributed around a central pixel along a circular circumference centered at central 

reference pixel define neighborhood region. Bilinear interpolation of points that do not fall within the pixels is done to 
allow any radii and any number of sampling pixels. For extraction of rotational invariant features, LBP binary code is 

circularly rotated until its' minimum value is gotten Maenpaa and Pietikainen (2005). Extended LBP descriptor could 

encode more features in an image; however, spatial information of the extracted features could not be preserved. Final 
histogram is found by joining histograms of each cell.  

 Local Directional Parten 

Local binary pattern is sensitive to changes in illumination and image noise. Local Directional Patterns (LDP) 

was proposed by Jabid et al. (2010a), a robust texture descriptor in respect to noise and non-monotonic illumination 
variations. Robustness of LDP is depicted in Figure 3 

 

 
 

 

 

 
 

 

 

Figure 3  

Comparison of LBP and LDP on an Original and a Noisy Image 

 
The first image is an original image that has its features extracted using LBP and LDP. The same image is 

exposed to noise like illumination in the second image. From the image it is clear that LBP changed with introduction 

of noise but LDP is robust and remained with the same value.  

Local directional pattern computes 8-bit code for central pixel in a 3 × 3 image region by comparing directional 
responses of each neighbouring pixel unlike comparing raw pixel values as in LBP. Prewitt (1970), Kirsch (1971) and 

Sobel and G (1968) are candidate edge detectors Pratt (1978) that can be used to derive gradient of an image. Among 

them, Kirsch is robust in detection of directional edges because it considers all eight neighboring pixels Lee (1996) in a 

3 × 3 image region. 

 

Kirsch edge detector 

It is a first-order derivative edge detector that derives gradient of an image by convolving each of the 3 × 3 
region with a set of filters (masks). Kirsch defined non-linear edge detector as in equation 6 Pratt (1978) 

𝑃(𝑥, 𝑦) = max{1, max𝑘=0
7 [|5𝑆𝑘 − 3𝑇𝑘|]} …………………………………………………………………………(6) 

Where 

𝑆𝑘 = 𝑃𝑘 + 𝑃𝑘+1 + 𝑃𝑘+2 ……………………………………………………………………………………………(7) 

 

And  

𝑇𝑘 = 𝑃𝑘+3 + 𝑃𝑘+4 + 𝑃𝑘+5 + 𝑃𝑘+6

+ 𝑃𝑘+7 

…………………………………………………………………………(8) 

 

85 32 26  81 29 32 

53 50 10  38 58 15 

60 38 45  65 43 47 

𝐿𝐵𝑃 =  00111000 
=  56 

 𝐿𝐵𝑃 =  00101000 
=  40 

𝐿𝐷𝑃 =  00010011 
=  19 

 𝐿𝐷𝑃 =  00010011 
=  19 
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Where 𝑎 in 𝑘𝑎 is evaluated as 𝑎 =  𝑎 𝑚𝑜𝑑 8 and 𝑃𝑘~[𝑘 = 0,1,2 … ,7] are eight neighboring pixels of 𝑃(𝑥, 𝑦) 

shown in Figure 4. Image gradient towards a particular direction is found by convolving 3 × 3 image region with the 

respective mask 𝑀𝑘 shown in Figure 5 

 

P3 P2 P1 

P4  P(x, y) P0  

P5 P6 P7 

8 neighbors of pixel 

P (x, y) 
 

 

Figure 4 (a)  
Eight neighbors of pixel P (x, y) and (b) corresponding Krisch Mask positions 

 

[
−3 −3 5
−3 0 5
−3 −3 5

] [
−3 5 5
−3 0 5
−3 −3 −3

] 

East M0 North East M1 

 

[
5 5 5

−3 0 −3
−3 −3 −3

] [
5 5 −3
5 0 −3

−3 −3 −3
] 

North M2 North West M3 

 

[
5 −3 −3
5 0 −3
5 −3 −3

] [
−3 −3 −3
−3 0 5
−3 5 5

] 

West M4 South West M5 

 

[
−3 −3 −3
−3 0 −3
5 5 5

] [
−3 −3 −3
−3 0 5
−3 5 5

] 

South M6 South East M7 

 

Figure 5  
Krisch Edge Response Mask in Eight Directions 

 

For each central pixel 𝑋𝑐, there are eight directional response values. Presence of a corner or an edge exhibits 

high absolute values. Interest of LDP is to find 𝑘 significant responses, set their corresponding bit value to 1 and assign 

0 to the remaining 8 − 𝑘 bits. The resultant binary string is converted to decimal and assigned to 𝑋𝑐 as its' LDP code. 

The process is done for all pixels in an image to obtain LDP-encoded image. Figure 6 shows process of image encoding 

using LDP operator. 
 

85 52 26 

53 50 10 

60 38 45 

 
 

M3 M2 M1 

M4  M0 

M5 M6 M7 

 
 

313 97 503 

537  399 

161 97 303 

 
 

0 0 1 

1  1 

0 0 0 

 
 

LDP = 000100112 =1910 
 

Figure 6  

Process of encoding an image with LDP operator with 𝑘 = 3 (a); Image region. (b) Kirsch masks as presented in 

Figure 5 (c) Result of convolving each pixel in (a) with 8 Kirsch masks. (d) Pick top 𝑘 = 3 significant responses, set 
there corresponding bit to 1 and the rest to 0 

 

Starting from M0, the LDP code is shown in equation 9. 

M3 M2 M1 

M4   M0  

M5 M6 M7 

(b) 8 directional 

Krisch mask 

positions 
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𝐿𝐷𝑃 =  110010002 =  1910  …………………………………………………………………………………….(9) 

LDP code shown is derived using equation 10 and 11 

𝐿𝐷𝑃𝑘 = ∑ 𝑏 ((𝑚𝑗 − 𝑚𝑘)

7

𝑗=0

× 2𝑗) 

……………………………………………………………………………………….(10) 

𝑏(𝑎) =  {
1, 𝑖𝑓 𝑎 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

……………………………………………………………………………………….(11) 

Where 𝑚𝑘  is the 𝑘𝑡ℎ  significant response, and 𝑚𝑗  is response of Kirsch mask 𝑀𝑗  . Local directional pattern 

operator generates 𝐶𝑘
8 distinct patterns in LDP encoded image. Histogram 𝐻(𝑖) with 𝐶𝑘

8 bins is used to represent the 

input image of size 𝑀 × 𝑁 as represented by equation 12 and 13 

𝐻(𝑖) = ∑ ∑ 𝑓(𝐿𝐷𝑃𝑘(𝑚, 𝑛), 𝑖)

𝑁

𝑛=0

𝑀

𝑚=0

 

………………………………………………………………………………..(12) 

𝑓(𝑝, 𝑖) = {
1 𝑖𝑓 𝑝 =  𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

………………………………………………………………………………..(13) 

Where 𝑓(𝑝, 𝑖) is a logical function that compares if the LDP code at location 𝑝(𝑚, 𝑛) of the LDP-encoded image 

is equal to current LDP pattern 𝑖 for all 𝑖 in the range 0 ≤ 𝑖 ≤ 𝐶𝑘
8. The resultant histogram has dimensions 1 × 𝐶𝑘

8 and 

is used to represent the image. Resultant feature has corners, spots, edges and texture information about an image Jabid 
et al. (2010b). The limitation of LDP is that not all responses are considered in generating the LDP code. The discarded 

responses though not among top 𝑘 , they could contribute into making LDP robust and pattern discriminative. 

Furthermore, some of top 𝑘 directional responses could possibly be in particular orientation like west-east.  

 Histogram of Oriented Gradients 
Originally proposed by Dalal and Triggs (2010), Histogram of Oriented Gradients (HOG) computes image 

gradient by counting occurrences of gradient orientations in local image regions. HOG uses 1D centered derivative mask 

[−1,0, +1] and [−1,0, +1]𝑇  for vertical (𝑔𝑥) and horizontal (𝑔𝑦) directions respectively to calculate image gradient of 

64 × 128  image divided into blocks of 16 × 16  with 2 8 × 8  cells making up a block. The magnitude(𝑔 ) and 

direction of the gradient (θ) are calculated as 

𝑔𝑥𝑦 = √𝑔𝑥
2 + 𝑔𝑦

2and θxy = arctan
𝑔𝑦

𝑔𝑥
 

…………………………………………………………………………(14) 

where 𝑔𝑥  and 𝑔𝑦 are vertical and horizontal gradients of the image respectively, 𝑔 is the gradient magnitude 

and θ is gradient direction. Figure 7 shows the 𝑥 and 𝑦 gradients, magnitude (𝑔) and direction ( θ ) visualization of an 

input image.   

Figure 7  

Histogram of Gradients Image Responses 

 

At every position (𝑥, 𝑦) the image gradient has magnitude and direction. The gradients of colour images are 

evaluated for every colour channel. The gradient at point (𝑥, 𝑦) is the maximum among magnitudes of colour channels 

and the direction (angle) is one that correspond to the maximum gradient. Histogram of gradients is created in 8 × 8 

cells. The resultant histogram has 9 bins corresponding to angles 0𝑜 , 20𝑜 , 40𝑜 , 60𝑜 … 160𝑜 . Figure 8 shows a sample 

histogram for single 8 × 8 cell where 𝟓 shows number of edges at orientation 120𝑜. 
 

  

     
Input Image x-gradient (𝑔𝑥) y-gradient (𝑔𝑦) Magnitude (g) Direction (θ) 
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8.75 2   13  5  26.25 

𝟎𝒐 𝟐𝟎𝒐 𝟒𝟎𝒐 𝟔𝟎𝒐 𝟖𝟎𝒐 𝟏𝟎𝟎𝒐 𝟏𝟐𝟎𝒐 𝟏𝟒𝟎𝒐 𝟏𝟔𝟎𝒐 

Figure 8  

Histogram of Oriented Gradient 

If direction θ𝑜  is between any two angles θ1
𝑜 and θ2

𝑜   shown in Figure 8 a voting scheme is employed to 

determine in which bin does θ𝑜 fall. Generally, if there are n entries in direction matrix with θ𝑜 where θ\%20 ≠ 0, the 

entries are shared between θ1
𝑜  and θ2

𝑜. The entries at θ1 and θ2 will be incremented by  

θ1 = 1 − (
|θ1

𝑜 − θ𝑜|

20
)

× 𝑛 

…………………………………………………………………………………………..(15) 

θ2 = 1 − (
|θ2

𝑜 − θ𝑜|

20
)

× 𝑛 
 

…………………………………………………………………………………………..(16) 

 

Respectively, sample of this voting scheme is shown in 8 where we show how 35 entries at orientation 165𝑜  

are shared between 0𝑜   and 180𝑜 . These histograms are calculated for every 8 × 8  cell and resultant histograms are 
concatenated to make up the HOG feature vector. This vector is normalized and used for pattern recognition. 

HOG is mostly used for object detection since it differentiates situations where a bright object is against a dark 

background or a dark object being against a bright background Satpathy et al. (2010) making it mostly suitable for shape 
description rather than texture feature descriptor. Texture descriptors should capture both image edges and subtle textural 

information like spots for better surface characterization. HOG is a very high dimensional feature and it only count 

occurrences of gradient in localized portions of an image without considering the direction of the gradient. A gradient 

at orientation 0𝑜   could be firing towards east of west with regard to reference pixel. It is important to encode all 
orientation, magnitude and direction of a gradient to make resultant feature vector more discriminative. Furthermore, 

HOG only calculates horizontal and vertical gradients of an image with the same weights for the edges. More 

discriminative image gradient is calculated using filters that consider more directions with different weights for each 
direction like Kirsch (1971) which considers eight directions or four orientations. 

 

3.2 Local Directional Histogram of Oriented Gradients 
The limitation of HOG is that it calculates image gradient using vertical and horizontal edges only. While this 

approach achieves better results in object detection, more orientations image gradients are needed to improve texture 

description using HOG. The proposed approach encodes image gradient at four orientations. The image gradients are 

calculated at 0𝑜, 45𝑜 , 90𝑜  and 135𝑜  unlike HOG operator which calculates image gradient at 0𝑜  and 90𝑜  only.  

Local directional HOG uses 1D centered derivative mask [−1,0, +1] and its rotations at 45𝑜 , 90𝑜  and 135𝑜  for 

vertical (𝑔𝑥), left diagonal ( 𝑔𝑙𝑑 ), horizontal ( 𝑔𝑦 ) and right diagonal ( 𝑔𝑟𝑑  ) directions respectively to calculate image 

gradient of 64 × 128 image divided into blocks of 16 × 16 with two 8 × 8 cells making up a block. These filters are 

shown in figure 9 while figure 10 shows horizontal, vertical, left and right diagonal image gradients and the 

corresponding magnitudes and angles.   
 

 
 

 

 
 

 

 

 
 

 
 

Figure 9  
Filters used for LDHOG Image Gradients Calculation 

 

Magnitude 𝑔𝑥𝑦 and angle θ𝑥𝑦 are calculated using 𝑥 and 𝑦 gradient responses as shown in equation 14. Using 

left-diagonal and right-diagonal gradient responses, second magnitude 𝑔𝑑𝑖  and angle θ𝑑𝑖 are calculated as  

-1 0 +1 

   

   
 

-1   

 0  

  +1 
 

X – Gradient Filter LD- Gradient Filter 

 -1  

 0  

 +1  
 

  -1 

 0  

+1   
 

Y- Gradient Filter RD- Gradient Filter 
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𝑔𝑑𝑖 = √𝑔𝑙𝑑
2 + 𝑔𝑟𝑑

2  and θ𝑑𝑖 = arctan
𝑔𝑙𝑑

𝑔𝑟𝑑
 

……………………………………………………………………..(17) 

Figure 10 shows the gradients visualization for x, y, right and left diagonal directions and their corresponding magnitudes 
and orientations 

 

   
Input Image X- gradient (𝑔𝑥) y-gradient (𝑔𝑦) 

   

LD- gradient RD- gradient Magnitude gdi 

   

Orientations 𝜃𝑑𝑖 Magnitude 𝑔𝑥𝑦 Orientation 𝜃𝑥𝑦 

Figure 10  

Gradients visualization for x, y, Right and Left Diagonal Directions and their Corresponding Magnitudes and 
Orientations 

 

Given an image region shown in Figure 11 (a), four image gradients shown figure 11 (b) are calculated. 
 

 

57 132 40 

30 50 81 

15 32 29 

 

51 100 

28 25 

 

θ di 41.76 

θ 62.98 

Image region Gradients Orientations 

 

Figure 11  
Sample LD-HOG Generation Process 
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From these gradients, two orientations shown in figure 11 (c) are calculated for current reference pixel using 
Equation 14 and 17. These angles are entered in their respective bins in two different histograms. The two histograms 

are then fused and used as a feature vector for TRS. Different fusion techniques can be used to investigated an Image. 

Fusing techniques include: MAX pooling - Angles in the same bin are compared in the two histograms and the maximum 
angle is chosen and entered to the respective bin MIN pooling - Angles in the same bin are compared in the two 

histograms and the minimum angle is chosen and entered to the respective bin 

AVG pooling - The average of the two angles is entered to the respective bin. Maximum pooling approaches 
was repeated on the whole image region and resultant LDHOG is used as feature descriptor for TSR.  The image is 

cropped and resized to 64 ×  128 pixels. Notably, the image can be resized to any dimensions but the aspect ratio must 

be 1:2. Horizontal, vertical, left-diagonal and right-diagonal image gradients are calculated for each of the colour 

channels to obtain image gradient for each direction and the channel with highest gradient is chosen as the image 

gradient. The image is further subdivided into cells of 8 × 8 pixels. This leads to 8 × 16 cells. The cells are grouped 

into blocks where each block consist of 2 × 2 cells resulting to 7 × 15 blocks. With each cell having 1 × 9 histogram 

feature, the overall feature vector is 7 × 15 × 2 × 2 × 9 =  3780. Vertical and horizontal image gradients are used to 

calculate gradient orientations and their respective magnitude for first local directional histogram. The right-diagonal 
and left diagonal image gradients are used to calculate gradient and their respective magnitude for second local 

directional histogram. For each traffic sign, the two histograms obtained are fused and the resultant feature vector used 

for TSR. Linear Discriminant Analysis (LDA) is used to reduce dimensionality of the final feature vector before the 
model is learnt.  

 

3.3 Orientation Binning 

In this study, 9 bins of 20𝑜   range are used. The histogram contains 9 bins ranging from 0𝑜   to 180𝑜  . If an 

orientation falls within a bin range, the entry in the respective bin is incremented. If an orientation lies between two 

bins, a voting scheme shown in Equation 15 and 16 is applied. The choice of number of bins was motivated by previous 

research Dalal and Triggs (2005); Tan et al. (2014) who found that 9 bin histograms achieve higher accuracies compared 
to 15 bin histograms. 

Figure 12, 13 and 14 shows the bins extracted from the features extracted 

 

 
Figure 12  

HOG Bins for the Sampled Image 

 

Figure 13  

Diagonal HOG for the Sampled Image 
 

 

Figure 14  
Fused Bins for the Sampled Image 

 

3.4 Normalization 
Histogram blocks are normalized using L2-Norm normalization approach as 

|V|𝐿2 =
𝑣

√∑|v|2 + ϵ2
 

 

……………………………………………………………………………………………..(18) 
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Where |V|𝐿2 is a normalized feature, |v| is none normalized feature and ϵ =  0.00001 is a small constant used 

to prevent overflow when 𝑣 =  0 . This normalization approach is chosen since it performs better compared to L1 

normalization Dalal and Triggs (2005). 

 

3.5 Materials and Experiments 

Datasets: The study utilized traffic sign images from German Traffic Sign Detection Benchmark (GTSDB) 

dataset. Introduced by Stallkamp et al. (2012) in 2012, GTSDB is an open-source dataset that has 43 classes of traffic 

signs (51,840 images). The Dataset has: training set with 39,209 images and the testing set with 12,631 images. The 
dataset has a representation of real-world scenarios including different brightness, occlusion and different sizes, and was 

collected from different locations in Germany. The study applied this dataset in training and testing of LDHOG for TSR. 

Figure 15 shows a sample of images for each class. The dataset was 

 
Figure 15 

Sampled Images per Classes 
Each of the images in Figure 15 were selected because it has different shape, brightens, size and color 

distributions and it has been widely used in TSR research as shown by figure 16, 17, 18 below. 

3. 

 
Figure 16 
Class Distribution of GTSDB Dataset 

 
3The test sample was 20 percent of the dataset. The training sample was 80 percent 
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Figure 17 

Shape Distribution of GTSDB Dataset 

 
Figure 18 
Color Distribution of GTSDB Dataset 

 

3.6 Classification and Regression 
TSR can be modelled as a regression of classification problem. Notably, Multiclass classification was performed 

on The GTSDB dataset targeting 43 classes. Regression is used to model TSR classifier with experiments on SVM, 

random forest and decision trees as proposed by Hechri and Mtibaa (2020) and Lee et al. (2024). An image is classified 

into a class Id using these classifiers. for SVM, from experiment, the following values were selected: kernel=’rbf’, C=10, 
gamma=’scale’, class weight=’balanced’ and probability=True. RBF was selected because of handling non-linearity. 

Traffic signs have complex shapes/textures that are non-separable in linear space and has outperformed polynomial and 

sigmoid kernels for vision tasks Patle and Chouhan (2013). The regularization parameter C has wider margins (high 
probability of misclassification) with smaller values while larger value has a high probability of overfitting. 10 was 

selected for GTSDB task from experiment results. The kernel co-efficient was set to scale to allow for adaptability of 

feature scaling and avoids manual tuning pitfalls. GTSRB dataset has different number of images per class as shown in 

figure 16 causing class imbalance. To solve this class weight is set to balance to prevent biasness 
 

3.7 Validation and Evaluation Protocol 

The dataset was imbalanced with warning signs having more classes compared to Mandan dory and reservation. 
Therefore, stratified K-fold validation protocol is used to validate LD-HOG based TSR on GTSDB datasets. In this 

validation protocol, the datasets are randomly split in k disjoint subsets of the same size. Then, k iterations of training 

and validation are performed such that in every iteration, a different fold of data is reserved for validation while the 
remaining k−1 are used to learn a model. The estimated error is the mean of all validation errors. In this study, k was set 

to 5. Different values of k were tried and 5 was chosen as compromise between subset sizes, validation accuracies and 

computational efficiency. Additionally, comparison of LD-HOG to HOG was done using precision, recall and F1-Score. 

Precession measures how reliable are positive predictions. High precision means low false alarm. For TSR, precision 
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should be high as possible because misclassification can lead to an accident. Precession is calculated using the following 
equation 

 Precision =  ………………………………………………………………………………………………. (19) 

Where: 

TP = True Positives (correctly predicted positives) 
FP = False Positives (incorrectly predicted positives) 

Recall measures how many actual positives were found. For recall, a high value implies that the model missed a few 

true instances. Equation 15 shows how recall is calculated. 

 Recall =  ………………………………………………………………………………………………….. (20) 

Where: 

FN = False Negatives (actual positives predicted as negatives) 

F1-Score measures the harmonic mean of precision and recall. It is the best measure for imbalanced dataset like GTSRB. 
It is used to prevent misleading high accuracy from imbalanced. F1-score is calculate using the equation 

 Precision × Recall 2TP 

 F1 = 2 × = …………………………………………………………………………………………………….. (21) 
 Precision + Recall 2TP + FP + FN 

 

IV. FINDINGS & DISCUSSION 
 

Three experiments were performed to measure and evaluate the performance of LD-HOG in comparison to 

other handcrafted features HOG, LBP AND LDP. 

The experiments were done using three classifiers (SVM, Random forest and decision trees) on GTSDB dataset. 
The first experiment was done on image preprocessing comparing different interpolation methods on different aspects 

including sharpness, gradient power, Structural Similarity Index (SSIM), Time and Memory. The results of this 

experiment are shown in Figure 20. 

 
 (b) Gradient 

(a) sharpness power 

 
 (b) Combined 
(a) SSIM score  

 

Figure 20 
Preprocessing Results for Different Interpolation Methods 

 

LanczoS4 interpolation method was selected as the best interpolation method for image preprocessing. The 

second experiment was to test performance of LDHOG, HOG, LBP and LDP on GTSDB dataset and SVM classifier. 
The experiment measured precision, recall, f1-score and support. Table 2,3,4,5 and 6 summaries the experiment results. 

 

Table 2 
Comparison for LBP, LDP, HOG and LD-HOG on GTSDB Dataset using SVM 

 

 

 

 

 

 

  

Feature Extractor Precision Recall F1-Score 

LD-HOG 99 99 99 

HOG 96 95 95 

LDP 93 92 91 
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Table 3 
Comparison for LBP, LDP, HOG and LD-HOG on GTSDB Dataset using Random Forest 

 

 

 

 

 

 

Table 4 

Comparison for LBP, LDP, HOG and LD-HOG on GTSDB Dataset using Decision Tree 

 
 

 

 

 

 

 

Table 5 
Comparison for LBP, LDP, HOG and LD-HOG on GTSDB Dataset using Average 

 

 
 

 

 
 

 

Table 6 

Stratified K fold Validation Results 
 

 

 
 

 

 

 

 

V. CONCLUSION & RECOMMENDATIONS 

5.1 Conclusion 
This paper proposes a new operator, LD-HOG, for encoding image gradient. The proposed operator is an 

extension of HOG operator. In LD-HOG, a 1D derivative mask [−1, 0, +1] and its rotation at 45o, 90o and 135o is used 

to calculate two image gradients. The histograms of the two gradients are fused using maximum pooling techniques and 
used as a feature vector for age estimation. Experimental results on GTSDB dataset show that LD-HOG outperforms 

HOG features descriptors in TSR. The performance of LD-HOG in TSR demonstrates that using all the 8 neighbors of 

a pixel in encoding the image gradient at that particular pixel results into robust features for object classification as 

compared to considering only 4 neighbors. In a digital image, each pixel pi has n = 2(d+2) neighbors p0, p1...pn−1 at distance 
d from itself. All the neighboring pixels carry subtle information about the gradient of the image at distance d from pixel 

pi. Therefore, when encoding image gradient at pi all the neighboring pixels at distance d should be considered. 

 

5.2 Recommendations 

The study recommends the following for future studies. When great robustness to orientation and texture 

fluctuations is needed, LD-HOG should be taken into consideration as the preferred feature extraction technique in TSR 
applications. In order to assess LD-HOG's generalizability, it should be tested in more domains as pedestrian detection, 

face recognition, and vehicle classification, given its exceptional performance on the GTSDB dataset. To further improve 

feature resilience under different object sizes and resolutions, future studies should look at integrating LD-HOG with 

multi-scale analytic methodologies. 
 
 

  

Feature Extractor Precision Recall F1-Score 

LD-HOG 95 95 95 

HOG 91 89 90 

LDP 87 88 88 

Feature Extractor Precision Recall F1-Score 

LD-HOG 76 76 76 

HOG 65 64 64 

LDP 61 62 62 

Feature Extractor Precision Recall F1-Score 

LD-HOG 90 90 90 

HOG 84 82 83 

LDP 80 81 80 

classifier Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Average 

SVM 98.55 98.64 98.95 98.89 99.02 98.81 

RF 94.52 94.80 94.98 94.77 95.28 94.87 

DT 76.31 76.33 76.45 76.72 76.70 76.50 

Average 89.79 89.92 90.12 90.12 90.33 90.06 
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